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Abstract

"Numerical Methods of Parameter Identification for Problems
Arising in Elasticity", by James Michael Crowley, Captain, USAF,
Ph.D., Brown University, June, 1982, 130 pp.

i

Numerical methods for approximate identification or estima-
tion of constant parameters in certain fourth-order partial dif-
ferential equations (distributed parameter systems) from data are
proposed based upon a reformulation of the problem as an abstract
equation in a Hilbert space, Projections onto suitable subspaces
of splines are used to obtain a semi-discrete approximation which
is used to estimate the unknown parameters., Convergence of the
approximations is proved using linear semigroup theory and the

Trotter-Kato theorem. The proposed methods are applied to estima-

tion of parameters in both the Euler-Bernoulli equation with struc-

tural and viscous damping and the Timoshenko equation for trans-

verse vibration of a beam. Numerical results are presented.
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INTRODUCTION

In many problems of practical importance one would like to
identify unknown parameters in mathematical models given certain
observations of the underlying physical phenomenon being modeled.
A general framework for approximating or estimating unknown para-
meters in partial differential equations, using modal (eigenfunc-
tion) approximations, was presented in [11)]. The general theo-
retical framework developed in [11] was subsequently applied to
spline-based techniques in [ 7] to two classes of second order
initial-boundary value problems.

This thesis is devoted to developing numerical methods for
estimating unknown constant parameters in certain fourth order
constant coefficient partial differential equations. The approxi-
mation techniques follow the approach in [ 7) and convergence is
proved using the theoretical convergence framework developed in
{11] employing linear semigroup theory. The necessary theoreti-
cal framework is summarized in Chapter 1,

We treat identification problems for two specific equations
in one dimension which model the transverse vibration of an elas-
tic or viscoelastic beam, and develop numerical methods for esti-
mating unknown parameters.

We examine estimation techniques for the Euler-Bernoulli
equation in Chapter 2 and for the Timoshenko equation in Chapter
3. In both cases we develop methods for numerically estimating
unknown parameters and prove convergence of the methods. Numeri-
cal results are provided to illustrate the theoretical convergence

results.
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The Euler-Bernoulli equation which we examine includes both
structural (internal) and viscous damping, and various boundary
conditions are used. We introduce two methods for estimating

parameters, one based on quintic splines (Section 2) and one based

on cubic spline approximations (Section 3). For the Timoshenko ‘j
equation (Chapter 3) we examine one technique for estimation of |
parameters based upon cubic spline approximations.

In Chapter 4 we discuss the implementation of the approxima-
tion techniques into a computer code. Since all of the computer
codes used here for the fourth order problems and in [ 7] for

certain second order problems have the same general structure, th

discussion of the implementation is made sufficiently general to

describe all of the spline-based methods which we have developed. ]

The notation employed throughout this thesis is rather stan- .
dard. For norms of elements in Banach spaces we use |:|, whereas j
[1-]] 1is used for operator norms. A subscripted norm I-Im de- 1

notes certain norms equivalent to the usual norms on the Sobolev
spaces H™ over [0,1], and specifically |-|0 denotes the H°

(LZ) norm. Similarly, inner products on certain subspaces of

the Sobolev spaces H™ will be denoted by ARERE These will be

defined in Section 2 of Chapter 1. As we shall be dealing with -
state spaces Z which are products of function spaces, the sym-

bol |.] with no subscript (and similarly <.,.>) will be reserved

to denote the norm (or inner product) on the state space Z.
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CHAPTER 1. FOUNDATIONS

Section 1. The Identification Problem and Its Approximation

We begin by defining the identification or estimation problem
for a process governed by a partial differential equation and pro-
ceed to its abstract formulation., A general framework for ap-
proximating solutions is introduced along with tools necessary to
establish convergence. The techniques for approximating solutions
to the identification problem follow those introduced in [111,
where modal (eigenfunction) state approximations were applied to
a class of hyperbolic and parabolic equations, and also used in
[ 7], where spline-based state approximations were applied to the
same class of problems.

This section outlines the basic approach and thenry which will
be applied in later chapters to two specific equations, namely
the Euler-Bernoulli and Timoshenko equations for the transverse
vibration of a beam, and to specific spline-based approximations
for the identification problem.

We first define the identification problem for an initial-
boundary value problem. Suppose we have a physical process
modeled by an initial-boundary value problem with unknown para-
meters q = (ql,...,qp) € Rp; the parameters q; may be unknown
constant coefficients in the partial differential equation or
parameters appearing in functions in the initial conditions or
non-homogeneous term. Suppose also that we are given a set of
output measurements from the physical process which is modeled by
the initial-boundary value problem. In a sense which will be

made more precise in what follows, the identification (or estima-

shitabuite
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tion) problem consists of finling the vector of parameters q € RP
such that the solution of the initial-boundary value problem
"best fits" the output measurements of the physical process.

We will be interested in two particular initial-boundary value
problems, namely the Euler-Bernoulli and Timoshenko equations for
the transverse vibration of a uniform beam. The Euler-Bernoulli

equation, including structural and viscous damping, has the form

4 4
(1.1) Yee = 4Py - a,Dly, - oagy + £(t,x5q), t >0, x € [0,1]

y(0,x) = y,(x5q)
Y (0,x) =y (x5q),

with appropriate homogencous boundary conditions at x = 0 and
x = 1, where Dj = aj/axj, y(t,x;q) 1s the transverse displace-
ment, and f(t,x;q) 1is the applied load. Here, 5 45, and a4
are unknown constant coefficients, and q4,...,qp are parameters

appearing in the nonhomogeneous (load) term and initial conditions.

The Timoshenko equations can be put in the form

2
q,D"y - q;D¥ + £(t,x;q)

(1.2) Ye
t
t >0, x € [0,1]

Ve = 5070 + ay(Dy - W)
y(0,x) = yqy(x;q)

Y¢(0,x) = y;(x59)

v(0,x) = ¥,(x5q)

wt(O,x) = wl(x;q)

where again we associate appropriate homogeneous boundary condi-

tions with (1.2) at x =0 and x = 1. Here y(t,x;q) 1is trans-

verse displacent and ¥(t,x;q) 1is the angle of rotation of a
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cross-section of the beam.

More will be said about these equations in the sequel. The
above is sufficient at present to set the framework for the
identification problem.

We shall be interested in the identiiication problem associa-
ted with (1.1) or (1.2). Given a set of observations n = {ﬁi}§=1,
where ﬁi = (?(ti,xl),...,§(ti,x2))T and §(ti’xj) is the ob-

served displacement at t.,

xj, of a process which we assume to
be modeled by (1.1) or (1.2), find the vector of parameters

q = (al,...,ap) which minimizes J(q;y,n), where J 1is some
functional measuring the fit of (1.1) or (1.2) to the data ai.
Specifically, we shall use a pointwise fit-to-data criterion of

the form

o
™

lg. -

(1.3) J(q,y,n) i i

e~
—

n

where £y = (y(ti,xl),...,y(ti,xl))T, and (t,x) —> vy(t,x)
(respectively, (t,x) ——> (y(t,x),¥(t,x)) 1is the solution of
(1.1) (respectively, of (1.2)).
To ensure that the initial-boundary value problems are well-
posed, we shall ;ssume hereafter
1) Q@ 1is a compact set in Rp, and

(HQ) 2) there exists qF > 0 such that q, > qi for all

q € Q.
For the Timoshenko equations, we also require, along with the

above

e
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2') there exists qg >0 such that 9z > qg for all q € Q.

Remark. Note that we have formulated the initial-boundary
value problem for homogeneous boundary conditions. If nornhomo-
geneous time dependent boundary conditions occur, of the form
(Djy)lx=0 = h(t,q) they will be transformed to homogeneous bound-
ary conditions by a transformation of the form v(t,x) = y(t,x) -
g(x)h(t,q), (see [29], where a general method for transforming
(1.1) with time-dependent boundary conditions to (1.1) with homo-
geneous boundary conditions, in the case qQ, = 0, q; = 0, is dis-
cussed). When such a transformation is performed and the output
measurements in the fit-to-data criterion correspond, as above,

to y, it is appropriate to modify J in (1.3) to

(1.31) '@V, h) = ey - 817

o~
[

i
where

€1 = (V(ty,x) + glx)h(t;,q),...,v(t;,Xg) + g(xp)h(t;39)) 7.

Definition 1.1. The identification problem (ID) for (1.1) (or

(1.2)) is defined as the following: given (1.1) with unknown
parameters q = (ql,...,qp) € RP and a family of solutions

(t,x) —> y(t,x;0)  ((y(t,x;a),¥(t,x;q))7 for (1.2)), and a set
of output measurements {ﬁ(ti)}§=1, find q € Q, where Q is some

parameter set in RP satisfying (HQ), such that

J(Q,y(+»+39),A) < J(q,y(-,+;q),7) for all q € Q,

where J 1is the cost functional (1.3).
Having formulated the identification problem for two model

initial-boundary problems, we proceed to an abstract formulation
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of the problem. First we write the initial-boundary value problem
(1.1) or (1.2) as an abstract equation on an appropriate Hilbert

space Z, in the form

(1.4) i(t) =o/(q)z(t) + F(q,t) for t >0

z(0) = zg

where 2z(t) = (zl(t),...,zn(t)) € Z for every t € {0,T], and
zl(t) corresponds to y(t,-) in (1.1) or (1.2).

Specific formulations of (1.1) and (1.2) as an abstract equa-
tion will be examined in Chapters 2 and 3. 1In each case, the ab-
stract equation will be formulated in such a way that /(q) gen-
erates a C0 semigroup T(t;q) on 2Z; i.e., t +—> T(t,q)zO
is the solution to 2z(t) =o/(q)z(t), z(0) = Zg-

The notion of dissipativeness will play a central role in
proving that 4(q) 1is generator of a C0 semigroup in the speci-

fic examples to be considered. A densely defined operator ¥ is

called dissipative if <9%,z> < 0 for all z € Dom(s), and maxi-

mal dissipative if its only dissipative extension is itself.

While there are many simple conditions which guarantee that a
dissipative operator generates a C0 semigroup, we shall use one
primarily: a maximal dissipative operator & generates a C0
semigroup ({T(t)} of contraction on 2Z; i.e., ||T||<1 (cf: [25,
p. 88]).

We will be interested in mild solutions of (1.4): t +—> z(t;q)

is called a mild solution on ([0,T] if it satisfies
t
(15) 25 = TGz + [ TE-s0F@,94s

for every t € [0,T). We will also place the following conditions




on F which guarantee uniqueness and existence of mild solutions

z(-,q) € C(0,T;2) to (1.4) (see [11, p. 13]1):

1) The map t +——> F(q,t) 1is measurable,
(HF) 2) the map q —» F(q,t) 1is continuous, and
3) there exists k(t) € LZ(O,T) such that

|F(q,t)| < k(t).

We note in passing that when strong (classical) solutions to

(1.4) exist they will be mild solutions. In fact, if €

z

0
Dom((q)) and t+—> F(q,t) is strongly continuously differen-
tiable in (0,T) with derivative continuous in {0,T], then,

{ , p. 203)

i) z(t) 1is absolutely continuous in (0,T), where t > z(t)
satisfies (1.4)
ii) z(t) € Pom®) for t > 0O

iii) Jz(t) - zol -0 as t -+ 0

iv) z(t) satisfies (1.5); i.e., t —> z(t) 1is a mild solution.

Also, the relation between weak solutions of (1.4) and mild
solutions of (1.4) is given by the following theorem [ 3, p. 204].
If we relax the assumptions above and only require that F(q,:) €
LZ(O,T;Z), then there exists a unique weak solution t »—> 1z(t;q)

of (1.4) for 0 <t < T, where

<z(t),z> 1is absolutely continuous for every {{ € Dom(a*),

and

£ <z(t),0 = <2(t), 0> + <F(q,t),0> , 0<t<T,

Furthermore, z(t) satisfies (1.5); i.e., t —> 1z(t) 1is also a

mild solution.
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To define point evaluations, we note that Z will always be

taken as a function space of R"-valued functions defined on

(0,11. Thus for every q € Q, t € [0,T], we may associate the

function wu(.,x;-): [0,1} + R® satisfying u(t,-;q) = z(t;q).

Then, with u(t,-;q) = (ul(t,-;q),...,un(t,-;q)), we define the

map woz(t;q) = ul(t,~;q). In subsequent applications, we will

always take Z = Z1 X ,,, X Zn where Z1 consists of functions :
sufficiently smooth (in fact, subspaces of the Sobolev spaces H™,
where m > 1) that point evaluations of uy will make sense.

Now, as we have set up the abstract equation (1.4) so that

zl(t;q) corresponds to y(t,-;q), we may define the cost func-

tional J(q,z(-,q),n) by
(1.6) J(a,z(-3a),0) = J(q,myz(,a),0),

where J 1is defined in (1.3).
This leads us to define in place of (ID), the abstract

identification problem.

Definition 1.2. The abstract identification problem (IDA) con-

sists of the following: find q € Q €« RP such that
3(q,2(-,2),0) < J(a,z(-,q),7) for all q € Q,

subject to z(-;q) satisfying (1.5).

Remark. This is, of course, a reformulation of the original i
identification problem in terms of the abstract equation, employ- ;
ing mild solutions. The two coincide where classical solutions
of (1.1) or (1.2) exist. It is possible (see [11, pp. 7-8)) to 1
formulate the cost functional J in a more general way so as to ﬂ

4

permit identification when data N consists of measurements of
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ooy

quantities other than transverse displacements. Our goal here is

L

to demonstrate how a numerical approximation may be constructed,
based on the form of (1.4) and the choice of Z, and hence we
have restricted our attention to the above problem.
Since we cannot solve (IDA) directly in general, we describe
a general procedure for approximating solutions to (IDA) following

the approach taken in (7] and ([11]. We take a sequence of finite f
N N

dimensional subspaces ZN c Z and define P ': Z + Z to be the
orthogonal projection satisfying

N N . . ¥
(1.7) |P"z - z| < |g - z| for all ¢ € 2, or equivalently,

(1.8) <PNz - z,z> = 0 for all r € zN.

N

The subspaces Z will be chosen so that ZN + Z in the sense

that Ph + I strongly on Z. We then replace the abstract equa-

tion (1.4) on Z by a sequence of approximating equations on ZN:

(1.9) Ny =@M t) + FN(q,t) for t > 0
v N
2N(0) = zp(a).
The approximations we use are

M) = PPN

FN(a,t) = PVE(q,t)

N N i |
0 = P zgla). ?

Z

Note that this choice of.g/N(q) requires that N Dom(a/(q)) .
This requirement not only imposes limitations on the smoothness of h
the elements in zN but also dictates that the boundary condi- ;
1

tions, which appear in Dom(a/q)), be satisfied by every zN(t)e ZN.
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Remark. The norms on the spaces Z wused in subsequent ap-
plications of this theory may be parameter dependent, in which H
case the projections PN(q) may depend on the parameters. Al- |
though we do not emphasize this parameter dependence until we

encounter specific cases, this should be kept in mind.

Assuming that o/(q) 1is the generator of a C0 semigroup,
(q) 1is closed, and by the closed graph theorem,j/N(q) is a
bounded operator (see [ 3, p. 80). & closed and B bounded im- '
plies /B 1is bounded, hence P%XTq)PN is a bounded operator).
Thus ;/N(q) generates a semigroup {TN(t;q)} given by éyN(q)t.

Moreover, t +> zN(t;q) satisfies (1.9) on [0,T] if and only

if it satisfies

v t \
(110 M) = NPz (a) - [0 ™ (t-s;a)P F(q,5)ds.

Then standard Picard iteration arguments imply that solutions

2N(.3q) of (1.10) exist. :
Moreover, when /(q) 1is maximal dissipative (and hence gen- |

erates a C0 semigroup of contractions), then ;%N(q) will also

be maximal dissipative, and so HTN(t;q)H < 1. This follows from

the following:

ng(q)z,z>

<Ny(q)PVz, 2> ;
594q)PNz,PNz> j
|
0 |
t
l

| A

and




<@N(a))*z,2>

<(PN(q) PN *2, 2>
= <PN(Mq))*PNz,z>
= <(@q))*P z,PNz>

0,

| A

where we have employed the self-adjointness of the projection

N
operator P

and the characterization that a dissipative opera-
tor 2 is maximal dissipative if and only if <@%,z> < 0,
<okz,2> < 0 and & is closed [25, p. 85].

We can then formulate an approximate identification problem.

Definition 1.3. The approximate identification problem (IDN)

consists of the following: find EN € Q ¢ RP such that

v

~ ] | -] N ~ ~
3@, N5T M < T,z (5a),f)  for all q € Q

subject to zN(-;q) satisfying (1.10) on [O0,T].

One of the goals will be to prove convergence of the solutions

HN of the approximate problem (IDN) to a solutien q of the

identification problem (IDA). In {11, pp. 15-17], it was proved

that the map q —> zN(t;q) is continuous for zN(-;q) satis-

fying (1.10). Since J consists of point evaluations on the
first component of zN(-;q), it is easily argued that the map

v —> 3(-,v,‘) is continuous on C({0,Tl;z) (recall again that

we will take Z = Z1 X ... X Zn such that Z1 is a subset of H1

or HZ). Thus we find that the map q —> 3(q,zN(-;q),ﬁ) is

continuous, and so for each N there exists a solution EN to

the approximate identification problem (IDN)., By the compactness
of Q, there exists a convergent subsequence (again denoted by EN)

such that EN converges to some q in Q.




We show that this q is a solution to the identification

problem (IDA). This will be accomplished if we can show
(1.11) lim qu—q*I = 0 implies limlzN(t;qN)-zN(t;q*)l =0
N> N0

for every t € [0,T]. To see this, observe that E(EN,ZN(';EN),ﬁ)
< 3(q,zN(-;q),ﬁ) for every q € Q, since EN is a solution of
(IDN). Taking the limit as N =+ =, and applying (1.11), we ob-

tain
J(@,z(-39),n) < J(q,2(*39),Nn)

for every q € Q. Thus q will be a solution of the identifica-
tion problem (IDA) if (1.11) can be shown to hold. Since t ~—>

z(t;q) satisfies

t
(1.0 250 = TGO2@ » [ TEsaF@sds, e (0,11,
and t —> zN(t;q) satisfies

t
(1100 2Nt = TP 2p(a) ¢ ]0 T(t-5;q)P"F(q,5)ds,
t € (0,T],

an application c¢f the Lebesgue bounded convergence theorem (see
[11, p. 20]) yields a convenient criterion for showing when (1.11)

holds.

Proposition 1.4. Let t+—> 2z(t;q) and t +— zN(t;q) be

solutions of (1.4) and (1.10) respectively, and assume (HF) holds.

Then

1im|qN-q*| = 0 implies éimIzN(t;qN)-Z(t;Q*)l =0
>0

N+

for every t € [0,T] if




i) HTN(t;qN)H < Me®t with M,w independent of N, q.
ii) PN + I strongly in Z.
iii) TN(t;q) + T(t;q*) strongly in Z and uniformly in
t € [0,T] when {qN} is any convergent sequence with
QN+ qr.
This proposition, proved in [11, p. 20) for the more general case
when F can be mildly nonlinear, is the fundamental tool in prov-
ing convergence of solutions of the approximate identification
problem to solutions of the abstract identification problem.
Verification of (i) has already been treated in the case where
#(q) 1is the generator of a C0 semigroup of contractions. In
that case, we have already shown that IlTN(t;q)H < 1.

Part (ii) of Proposition 1.4 will be verified for the specific
cases where ZN is the linear span of certain cubic or quintic
splines satisfying prescribed boundary conditions. This will be
done in Section 3.

Finally, part (iii) of Proposition 1.1 can be established using
the Trotter-Kato theorem, which can be viewed as a functional
analytic version of the Lax Equivalence Theorem (stability plus

consistency implies convergence). The version we use is due to

Kurtz [28]:

Proposition 1.5. [28]. Let (#|-]) and (@ ,|-]Q, N = 1,
2,..., be Ranach spaces and let N BN be bounded linear
operators. Assume further that 9(t) and jVN(t) are linear
Cy - semigroups on 4 and A with infinitesimal generators

o and N respectively., If
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. N
lim |7 le = |z] for all :z € %,
N-»m

-~

ii) there exist constants M,& independent of N such that
IIEVN(t)HN < Mth, for t > 0,

iii) there exists a set 2 < 4 such that D c dom(,g}), 9 =P
and (AO -/)D =B for some A, > 0 for which for all

0
~ N\ \ e
z €2 we have limlﬂl\wr\‘z - MzIN =0,

N+

then limleN(t)nNz - an7(t)z|N = 0 for all 2z € %, uniformly in

N>
t on compact subsets of [0,«).

Section 2, Preliminary Definitions of Spaces and Norms

We now introduce some of the spaces and norms to be used in
later chapters and collect some facts about them. Denote by H™
the usual Sobolev spaces over [0,1] in one dimension. These

are

Definition 1.6.

H™ = {¢: Dm'1¢ is absolutely continuous on [0,1]
and D" € L%(0,1)}.

mo .
The usual norm on H™ is |¢|2m = ) IDJ¢IiZ' Thus, H® = L%. The
H

j=0
spaces H™ with this norm are Hilbert spaces [47, p. 55; 1, pp.

| 44-47). Moreover, the graph norm defined by

2
1612 = [#]%, + D™
G Lz L2

is an equivalent norm to || n {1, p. 79]. Denote the norm in
H
0
H® by I-IO.

Since we will require functions satisfying certain prescribed
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boundary conditions, we will be concerned with certain subspaces
of H™. We will also find it convenient to weight the norm in
those spaces in order to obtain dissipative estimates. In parti-

cular, define for a fixed a € R, a > 0

Hp(a) = {6 € H': ¢(0) = ¢(1) = 0, (D$)(0) = (D&)(1) = 0,...,

o™ eyc0) = O™ ey (1) = o03.

with inner product
<4, u> o = <aDle, DT>,

where <.,.> is the HO (Lz) inner product. Denote the norm

0
Then Hg(a) is a Hil-

induced by this inner product as I-Im o
H
bert space and the norm |-|m o 1S equivalent to the usual norm
on HM (cf: [1, p. 1581).

N
0
H 2

We will also need certain other subspaces of H".

Definition 1.7. Given a > 0, define

H2 (o) = {6 € HE: $(0) = 6(1) = 0)
Ha(a) = {6 € H%: 6(0) = 6(1) = 6'(0) = ¢'(1) = 0}
Hi(a) = {6 € HZ: ¢(0) = ¢'(0) = 0}

where Hi(a) is equipped with the inner product
_ 2 2
<¢,‘P>2 o = <aD ¢)D ‘P>0-

Note that Hg(a) = Hg(a) as defined above. When o =1, we

simplify the notation by writing Hi = Hi(l).

Theorem 1.8. The spaces Hi are Hilbert spaces and the norm




is equivalent to the usual norm |-] , on Hp for

P!
k=1,2,3.

Proof: The case k = 2 1is well known (see above). We con-
sider the cases k =1 and k = 3. First we observe that I-I, 1

<
. 2
is a norm on Hk:
. . 2

Since I-Iz , 1is a semi-norm on H™ ([ 1, p. 73], we only
need to show ]u]z = 0 implies u =0 for u € Hi, k =1,3.
But |ul, = 0 implies Sy (D?w)? = 0, which implies D u = 0
a.e., or u=ax + b a.e.; furthermore, u, Du are absolutely con-
tinuous, u(0) = u(l) =0 (if k = 1) or u(0) = u'(0) = Q0 (if
k = 3), which implies a = b = 0.

5
1) k = 1. We first provg H2 is a closed subspace of H~,

1
Suppose uy € Hi is a Cauchy sequence in the I-lz norm; then
2 2 . . _ _
u U € Hl‘ But u € Hl implies that un(O) = un(l) = 0 for

every n. Thus, u, > u in Hz implies that un(O) + u(0), and

un(l) + u(l), and so u(0) = u(l) = 0.

Next we prove I-IZ is equivalent to the I-IG norm (and
hence to the |-| , norm.
H
Let u € Hi. Ther. there exists a v € HO such that Dzu = v
and for every v € HO there exists u € Hz such that Dzu = v,

namely u(x) = Ig fO v(s)dsds1 - X fé fol v(s)dsdsl. Then, py

the Rayleigh-Ritz inequality [40, p. 5],

Jul g

| A

% |Dul
lD(IZ le V(s)dsds1 - X f; f;l v(s)dsdsl)l0

I'Jx 1 s1
LT vis)as - J J v(s)dsds l
"o 0o 110

[
E

]

L
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+

0 J; Jsl V(S)d5d51|0}°

0

X
J v(s)ds
0

<l{
- T
0

Since v € H , Schwartz's inequality implies Ié!v(s)lds < |v|0.

fglv(s)lds < Iélv(s)lds

t

Define g(x) ]vlo for all x € [0,1].

| A

c. So, continuing the

Let ¢ = [v‘o. Then fé g(s)ds < fé C

chain of inequalities, we obtain

luly < %{ijz V(S)dslo + JZ le v(s)dsdsllo}

%{ JZ Izliv(s)[dsdsllo}

1 2 2
Fllcly + lelgl = 3¢ = 2 vl

A

+

0

I A

Jz[v(s){ds

| A

2

But v = Du a.e., so
2 2,.2 2
|u'0_<_1_{l\"0=F'DU,O=TEIU’2! 1
and .
2.2 2,2 2 2 42 4,2 ,2
D ulg < ID%uly + July < [D%uly + -“-Z-ID ulg
4 2 42
= (1 + “f)lD UIO’
m
or
2 2 4 2 ‘
[u‘z _<_ 'UIG i (1 + F)Iulz- J
Now, since the graph norm I-|G is equivalent to the usual
2 .
H® norm I-IZ2 = 7 IDJuIé on HZ, we have equivalence of |°|,
HE §= -
. 2
to | IG and to 1-|H2 on Hj.
2) k = 3. The proof is similar to the previous case (k = 1), ‘

once we observe that u € Hg if and only if there exists a Vv € H0

s
such that D2u = v, u(0) = u'(0) = 0, namely u = fg fol v(s)dsdsl.
The domains of the operators we will study will be certain

dense subsets of Hi satisfying particular boundary conditions.

- - . RREPRF U W N S
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Definition 1.9. We say ¢ satisfies boundary conditions of

type k, k=1,2, or 3, if

a) ¢(0) = ¢"(0) = ¢(1) = ¢"(1) = 0 for k =1,
b) ¢(0) = ¢'(0) = ¢(1) = ¢'(1) = 0 for k = 2, v}
c) ¢(0) = ¢'(0) = ¢"(1) = ¢"'(1) = 0 for k = 3.

Define Hi = {¢ € H4: ¢ satisfies boundary conditions of type k}. ‘;

Note that for the Euler-Bernoulli beam, a) corresponds to the
boundary conditions for the simply supported beam, b) to boundary
conditions for a beam clamped at both ends, and c) to boundary

conditions for a cantilevered beam.

: We will also need to use the following fact:

1

Hi is dense in nO (in the |-[O norm) .

This follows from the fact that HB can be characterized as the N

closure of C:(O,l) in the H™ norm {1, ©p. 44; 30, p. 917,

; c H? c Hi c HO for m > 4; the result follows

since C; is dense in H (1, p. 31].

and that C

Section 3. Splines and Error Bounds for Approximation by Splines

N
The approximating subspaces Z < I will consist of sets of
cubic or quintic splines satisfying prescribed boundary condi-
tions. We begin this section by defining a particular class of

interrolating functions, the L-splines. _
N i

. L N _ _ _
Given any partition 4 = {xi}1=0’ 0 = Xg € X] € o.. <Xy = 1,
the L-splines, as defined by Schultz and Varga [41], are piece- '

wise continuous functions satisfying certain interpolating con-

ditions. The functions themselves belong to the kernel of certain




}]. To be more precise,

differential operators on each [xi,x

i+l
given any differential operator L of order m

(1.12) Lu(x)

]
Ite~3

aj(x)DJu(x), m>1,

j=0

where aj € ¢’ [a,b], and given any partition AA, we defin. an
incidence vector d = (dl,...,dN_l) of positive integers with
1 <d; <m for 1< i <N-1, and define the L-spline space in

the following way:

Definition 1.10. (41]. The L-spline space Sp(L,AY,d) is

the collection of all functions on [a,b)l such that

N

L*Ls(x) 0, x € [a,b] ~ &

D*s(x]) = DXs(x}) for all 0 < k < 2m-1-d;, 0 < i <N,

where L* 1is the formal adjoint of L.

m

We will be interested in the specific case where L =D and

di =1, 0 < i < N, In this case, the functions in Sp(L,AN,d)
are piecewise polynomials of degree 2m-1, with sz'2[0,1] con-
tinuity. In order to obtain error estimates for projections onto
spaces of splines, we use well-known error estimates for inter-

polation by L-splines. For our purposes, we require the type-1

interpolant of [41).

Definition 1.11. [41]. Given £(x) € ¢™ 1[a,b] and with L

the differential operator of order m, AN, and d as above, we
say a function s(x) € Sp(L,AN,d) is a Sp(L,AN,d)—interpolant of
f(x) of type 1 if
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i) s(xi) = f(xi), 0 <1 <N
1) (%) (x;) = ") (x;), 0<k<m-lfor i=0andi=N,

It is known (41] that, given any f € c2m-1

[0,1], there exists
a unique s € Sp(L,AN,d) such that s 1is a type-1 interpolant
of f.

= i/N;

For each positive integer N, let AN = {xi}§=0’ X5

in the sequel, we will restrict our attention to such uniform

m

partitions of [0,1]. Also we take L = D  and d; = 1, i=1,

««+.,N-1. The corresponding spline subspaces will be denoted

Szm-l(AN) E SP(Dm,AN,d). Thus a spline of degree 2m-1 (order

2m-1 2m-2

2m) will be a function s(x) € S (AN) cC such that s(x)

is a polynomial of degree 2m-1 (order 2m) on each subinterval

[Xi’xi+1] defined by the partition 2N, 1 particular,

SS(AN) = {s(x) € CZ[O,I]: s 1s a polynomial of degree 3

on [Xi’xi+1]’ i=0,N-1}

is the set of cubic splines (m 2) and

SS(AN) = {s(x) € C4[0,1]: s is a polynomial of degree 5§

on [x.,x i=0,N-1}

1 i+1]’

is the set of quintic splines (m

J
3¢aNy  satisfies

3). The type-1 interpolant s

to f € C1[0,1] from S
i) s(xi) = f(xi), 0 <i<N,
and
ii) s(0) = £(0), (1) = £(1)
(Ds)(0) = (Df)(0), (Ds)(1) = (Df)(1).

bl -
Given f € C”[0,1], the type-1 interpolant s to f from SS(AR)
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satisfies
i) s(x;) = f(x;), 0 <i<N
ii) s(0) = £(0), s(l) = £(1)
(Ds)(0) = (D£)(0),  (Ds)(1) = (Df)(1)
(0%s)(0) = (0%£)(0), (D%s)(1) = (%F)(1).

These finite-dimensional subspaces Szm'l(AN) of HM1
possess a convenient basis (the B-splines) which will be defined
at the end of this section. Suffice it to say for the moment that

the B-spline basis functions have small (local) support which
2m-1

make the spaces S (AN) efficient for Galerkin-type approxi-
mations. The second advantage of splines is their approximation
power.

Since we shall be approximating functions using projections
of the form PN: T Szm'l(AN), k € {0,...,m-1}, we shall need
to obtain error bounds for such approximations by splines. The
following result for bounding the error in spline interpolation
will be fundamental in deriving error bounds for projections onto
subspaces of splines. While the results of this theorem have
been proved for general partitions (satisfying a uniformity condi-
tion 0<?3§_1 (xi+1-xi)/o<?iﬁ-1 (xi+1-xi) < o, some © > 1) and
for the_g;neral L in (1?1;), we state the results only for the
particular case we need.

Theorem 1.13. [44]. Given f € H™, let s be the unique

Szm-l(AN) which interpolates f in the sense of a

element in

type-1 interpolant. Then,

j 1,2m-j 2 .
ID)(£-5) 1y < o5 (TTIIDTElG, 5= 0,... 200,
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where 5 .m are constants independent of f. .
’ '
Remark. This result is proved for j = 0,...,m in (41,
Theorem 9]. For the case where m+l < j < 2m-1, see [44, Lemma

3.1} and the references there. We will also need the Schmidt
inequality [40, p. 7]:

Lemma 1.14., 1If pn(x) is a polynomial of degree n = 1,2,
b 2 ~ -2 b
.,5, then S2[Dp_(x)1%dx < & (b-a) 20p (x)1%dx, where

-~

c, = 12, ¢, = 60, 63 = 2(45 + v1605) = 170., ¢, = 440, C. =~ 738.8.

2 4 5

Now we wish to obtain error bounds for projections onto
certain subspaces of SS(AN) and SS(AN) consisting of splines
satisfying prescribed boundary conditions. In [71], we proved
the needed results for a certain subspace of cubic splines, and
we restate those results here.

AN

Denote by SS(AN) = {s € 53( ): s(0) = s(1) = 0}. Given a

function 1z € HO, denote by sz its projection onto Sg(AN)

in the HO norm. PS is the map Pg: HO-—>Sg(AN) satisfying
N 3..N N

<z - Pyz,s>) = 0 gor every s € Sy(47), or lPoz-zlo =

inf{|s-z|, | s € SO(AN)}. In [ 7}, we prove

1 4 0 N

Lemma 1.15. [7, 2.3}]. If =z € HO N H < H, and P0 is
the projection Pg: HO — SS(AN), then

D (PRz-2) 1, < g st ID%2lg, 5 = 0,12,

Take Hé(a] to be, as defined in Section 2, Hé equipped with the

l'll,u norm induced by the inner product <¢,w>1’a = <aD¢,Dw>0.

1

Given a function 1z € HO’ denote by PTZ its projection onto the

subspace SS(AN). PT is the map P?: Hé(a) —_— SS(AN) &
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satisfying <2z - PTz,s>1 . - 0 for every s € Sg(AN), or

(PTz-zll’a = inf{ls-zll’a | s € SS(AN)}. In [ 7], we also prove

1

Lemma 1.16. [7, 4.31. If z € H. n H* and PY is the

0 1
projection PT: Hé — Sg(AN) in the |-|1 o Torm, then
H]
jepN 1y3-5 4 .
D7 (Pyz-2) |y o < Yoy 5 (F) ID"2],, 3§ = 0,1,2,

Note that Pg and P? are both orthogonal projections onto

SS(AN), but the projections are taken with respect to different
norms. Alsoc, since H4 is dense in H1 and in HO, the above
error bounds hold on dense subsets (H4 n Hé) of the domain of

definition of the projection operators.

We wish to state and prove analogous results for projections
onto spaces of quintic splines satisfying prescribed boundary
J
conditions. Denote by Si(Ah) the collection of quintic splines

satis ™ .ng boundary conditions of type k, defined in Section 2:

Si(AN) {s € SS(AN): s satisfies boundary conditions of
type k, k = 1,2,3},

{s € C4[0,1]: s 1is a quintic polynomial on each

[xi,xi+1], i=20,...,N-1, and s satisfies the

boundary conditions of type k, k = 1,2,3}.

We shall again require two sets of projections. Those we need are

N . ,0 5, .N
Pz,k' H —> Sk(A )

and
N . 2 5..N
Ps,k' Hk(a) —> Sk(A ).

First, we obtain some preliminary bounds using the Schmidt inequal-

ity.

—— o o e W
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Lemma 1.17. Let s € Si(AN) be a quintic spline satisfying
boundary conditions fo type 1, 2 or 3. Then

Do Ipsly < eNIsly, 125 <4

ii) |p
and

iii) [sl, 4 < /@ NP lsl .

Proof: Apply the Schmidt inequality:

ne~12z
—

1 2 AT 2 - 2 [N 2
J |Ds(x)|“dx = J [Ds(x) | < N J [s(x)|°,
0 =1 X;_q i Xi1

since s(x) 1is a polynomial of degree 5 on [xi-l’xi]’ i=1,

.,N. This implies i) with & = /Z_, j = 1. Let g(x) = Ds(x).

Then g 1is a polynomial of degree 4 va each [xi_l,xi], i=1,

.»N, aad
rl 1 N - X.
Jan?sealfa = [galfax < 1og® [ 1500 1 2ax
0 0 i=1 X,
i-1
1
- g,N? I |g(x) | %dx
0
1
= &,N | |ps(x) | 2ax
0 ;
1 A
~ A2 4 2 -‘
< S 8N !Ols(x)l dx :
which establishes (i) with Ez = ¥& &, j = 2. In other cases

i
(j = 3,4) follow in a similar manner. Inequality (ii) is derived |

in the same manner. Let g(x) = Dzs(x); then g 1is a cubic poly-

nomial on [xi-l’xi]’ i=1,...,N, and
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2 2 2
021 = al?glf =T [ pg(nax
’ i=1 “x.
i-1
N xi
= o} [ D(Dg(x))dx
i=1

| A
Q
Z

- 2 N X.
<, 2 J 1 Dg (x)dx
=1 x5

[ A
[+
o
(N
(g1
=z
S
~1

which proves (ii) with 65 = /6283. Finally

N X.
Islg o= a]Dzslg a ) I 1 D(Ds (x))dx
’ i=1 “x

i-1

I A
Q
[g]]

E=Y
Z

X.
f 1 Ds (x)dx
1

I A

- . 4 N Xy
a E,E N ] I s (x)dx
1 ’x.

x x wb 2
a &CcN |s|0,

= v¥¢,c.. o

which establishes (iii) with 66 4

Finally, we bound the error for projections onto Si(AN) for

k =1,2.
N . . N
Lemma 1.18., Let P2 X be the orthogonal projection P2 X
’ ’
HO —_— Si(AN) with respect to the HO norm, for k =1 or 2;

then if z € {¢ € H6: ¢ satisfies boundary conditions of type k}

. N 1.6 6
i) IPZ’kZ‘ZlO < Kz’o(ﬁ) ID ZIO




N R EN¢) .
D g < @020, 5= 1.,

ii) |pl(p 1

... N } 1,4,.6
iii) ]PZ’kz le,a < Ya Kz’z(ﬁ) |D zIO.
Proof: The first estimate (i) follows directly from

N N
IPz,kz~z|0 < |Ikz-z|0

where Igz is the type-1 interpolant to =z from SS(AN). Since
z satisfies the boundary conditions of type k, and type-1 inter-

polants interpolate these conditions, it follows that

Iiz € Si(AN). Furthermore, the basic spline interpolation error
bounds (Theorem 1.13) hold, and thus (i) follows directly.

To obtain (ii), we write

N N

. . N X ;
(1.13) IDJ(Pz’kz-z)|0 < |DJ(P2’k-Ikz)|O + IDJ(Ikz-z)lO. .

A bound on the second term in (1.13) follows directly from the

interpolation error bounds:

) . «N 1.6-34,.6
|DJ(Ikz-z)|0 < cj,S(N Jp zIO.

To bound the first term in (1.13), we again resort to the Schmidt

N

. . . N 5,.N
inequality, since Pz’kz Ikz € Sk(A ),

jopN 1N
{D (Pz’kz Iyz) g

| A

A vitloN . _¢N
ch |p2,kz Ikzlo, by Lemma 1.17,

A

A ~ircN )
2ch IIkz z[o

| A

ZGJ.NJ'6 co’leﬁzlo, by Lemma 1.13,

which gives us (ii) with «, = 2¢.c +c
’

i€,3 Finally
?

J,»3°




N B 2, N 1.4,.6
IPz’kz-zlz’a = /a|D (Pz’kz z)l0 < Ya Kz’z(ﬁ) |D zlo.

The final projection error bounds which we shall require are
those for the projections in the Hi(a) norm. Recall that
Hi = {¢ € H: ¢ satisfies boundary conditions of type Kk,
k = 1,2, or 3}, and that Hﬁ(a) is Hi equipped with the norm
I'lz,a derived from the inner product vy g E <aD2~,D2->O.
We define Pg,k to be the orthogonal projection Pg’k: Hi(a) —>
Si(AN) satisfying

N _ s 5,.N
IPS’kz-zlz’a = 1nf{|s—z|2’a | s € Sp(a)}.

N . . N 2
Lemma 1.19. Let P3,k be the projection p3,k: Hk(a) —_
Si(AN) taken with respect to the I-IZ , morm. If z € {¢ € HO .

¢ satisfies boundary conditions of type k} and k =1 or 2,

then

. N 1.4, .6
i) IPS,kZ-ZIZ,u < /o KS’O(N) D7z |,

. - 2 _N 1,2

i) [DP(PY y2-2) ], o < V@ kg o (0 100z
... N
i) ' jze2) g < k5 , P00z

IN

Proof: Let K2 be the type-1 interpolant from SS(AN) to

z. Then since type-1 interpolants interpolate the boundary condi-
tions of type k (for k =1 or 2), IEz € Si(AN), and the spline
interpolation error bounds of Theorem 1.13 hold. The inequality

(i) follows directly from

N N, _ . 2, .N__ 1,4, .6
|P3’kz-z|2’a < 1Tz z|2’a oD (I z-2) |, < V& c2,3(ﬁ) D7z |-

To obtain (ii), write

a

T
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2 N 2..N N 2 _N A
(1.14) |D (Ps’kz-z)lz’a < |D (Ps’kz-Ikz)lz’a + |D (Ikz-z)lz’a.
The second term of (1.14) satisfies

2 N _ 4 _N 1,2,,6
|D (Ikz-z)lz’a = /a|D (Ikz-z)l0 < /u C4,3(ﬁ) D zlo

from the spline interpolation error bounds (Lemma 1.13).

To bound the second term we again use the Schmidt inequality .

N

N
and the fact that PS,kz - Ik

5 .N..
2 € Sp(AY):

~

21N N
CcN lPS,kZ Ikzlz,a’ from Lemma 1.14,

1A

2,_N N
|D (Ps’kz-Ikz)lz,a

A 2 N N
S ENTUPy zmzly o * l2-Tizl, o)

| A

A 2 N
28N Iz-Ikzlz’a

o 2 127N
2 /o &N D7 (Iyz-2) |,

~ 1,2 6
2 /o €5 (§ CZ,SID z|0
1.2,.6
/o KS,Z(ﬁ) D7z |4,

with K3’2 = c4,3 + 2c5c2,3. o

Remark. Projection error bounds for projections onto splines
satisfying cantilever-type boundary conditions (type 3) have
been excluded from the above. The reason for this is that‘they
do not fit into the above framework since the type-1 interpolant
does not interpolate these conditions. Furthermore, the proof of

the interpolation error bounds requires that the interpolating

spline to f satisfy the first integral relation (cf: [48]) b

e =

1 1 1
J (L£) %dx = f (L(£-5)}% + f (Ls)%dx,
0 0 0
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3

wvhere L =D here. For this to hold, it is necessary that

1 1
J (03s)%dx = (-1)[ s(D%s)dx.
0 0

But the integration by parts fails for type 3 boundary conditions.

However, our numerical results suggest that the projections
N
P2,k
those for

and P K when k = 3 satisfy error bounds similar to
’

:Zw/

N
2,k and Ps,k

In addition to their strong approximation properties, the

when k = 1,2.

spaces Szm'l(AN) are attractive computationally because they
possess a computationally simple basis of small (local) support, 1
namely the B-splines. The B-splines are compactly defined as

differences of the truncated power basis functions.

All the B-splines are translates of one basic B-spline. '
n . .

Define §n(x) = Gn(x-y)z‘1 = 3 (-1)1(3)(x-i)?-1, as the basic
i=0 t ‘
B-spline with knots at 0,1,...,n, where 6" is the forward
difference operator Gf(xo) = f(xl) - f(xo),...,6k+1f(x0) =
s¥e(x)) - ka(xo), and where :
n-1 (x-t)n-l, when t < x
x-07t = |
0 , when t > x
is the truncated power basis function.
To define the B-spline basis for Szm'l(AN), take n = 2m,

and define

gN (x) = B((x-y;)/h)

i,n-1

where h = Xje1 " X and where we have defined an extended
.. =N N+m-1 . N
partition A" = {x }1 l-m* %5 = ih, of A", and Yi = X - mh.




N
i,3

agrees with the Prenter definition of cubic splines [35]. 1Its

Remark. With the B-splines defined in this manner, B

relation to the normalized B-splines of DeBoor (cf: [42, p. 135])

. . N - 1 gl
1s given by Bi,n m I\l(X).
The support of each B-spline ﬁi om-1 is the interval
’
s . , 1
[xi-m’xi+m]’ and it is easily shown [42, p.116] that the N+m+1l
B-splines {ﬁh jN+m-1 span Szm'l(AN). Moreover, since all

1,2m-1"1i=1-m
B-splines are obtained by scaling and translating one basic B-
2m-1,,N

spline, it is efficient to store a function s € S (&) by
storing its coefficients: s € Szm_l(Ah) implies s(x) =
N+m-1 N

Cc.B. (x). The computational aspects of B-splines will
j=I-m 1 i,2m-1

be explored in Chapter 4.

Finally, recall that we require approximating subspaces in
Dom(%/). Thus we will require our spiines to satisfy the boundary
conditions. For the cubic splines in SS(AN), we require s(0) =
s(1) = 0. We may take from the N+3 basis elements in SS(AN)

the following N+1 basis elements for SS(AN):

N _ aN o ]
Bi,3 = Bi,3’ i 2y...4N-2
N _"N -A . N =I\ _/\
(1.15) By 5 = By o - 4By 5 BY ;=B .- By ./
N 4 2 _ N _ N ,aN
By.1,3 = By.1,3 - By,3/4 By, 3 = By g - 4By, s

The same approach can be used to obtain a basis for quintic splines

satisfying boundary conditions of type k. These are listed as

follows:
i) To obtain a basis for Si(AN), take from {B§ 5 ?:%2 \
’
the following N+1 splines (8NN (dropping the second sub-

i‘i=0
script)




32
N _ 2N
B = B), 3<i <N-3
y ~ o) y ~ T
By = By - 38, + 128%,
(1.16)

N _ &N o\
By =By - B,

N _ aN N
By =B, - B,

with By s(x) = By(1-x), j = 0,1,2.

ii) To obtain a basis for S3(a"), take

N _ 2N 33 &N . 165 aN
By = By - By * = B,
- N _ 2N 9 aN . 65 gN
(1.17) Y - B) - 3 8%+ 88N
N _ N 1 aN AN
BY - 8) - L&Y + 28%,

with B? = ﬁ?, 33 <N-3 and B (%) = B?(l—x), 0< i <2.

iii) For the cantilevered beam, we obtain a basis for

s2(a™y by taking BY,...,BY . as in ii) and
3 N-3

N _ aN . 3 aN N

By = By * 7 Bye1r * 3By,

N _ &N _aN
(1.18) By ; = By, - 2BY,,

N _gN 12N
By-2 = Byo2 7 7 Byer

Having defined the IDA problem and its approximation IDN, and
having defined the spline spaces necessary to set up the approxi-
mating subspaces ZN, we now proceed to some concrete applications

of these ideas.
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CHAPTER 2. APPLICATION TO THE EULER-BERNOULLI EQUATION

Section 1. The Euler-Bernoulli Equation with Structural and
Viscous Dampilng

tlaving introduced the basic ideas for the parameter estima-
tion problem, we turn to the application of these ideas to
specific equations arising in elasticity. In this chapter, we
discuss the Euler-Bernoulli equations. The well-known equations

for the transverse vibrations of a thin elastic beam are

2

#=E1 2%

ax
(2.1) 5
2
4
n ¥+ S = £
at X

where _# 1is the bending moment, m 1is mass per unit length and

f 1is the applied load. We wish to include two types of damping
in the above model. The first is velocity-proportional viscous
damping YV The second is structural damping arising from a
simple viscoelastic model, the Kelvin-Voight model, where we have
the constitutive relationship o = Ee + c€, where o,e are the
linear stress and strain, E 1is Young's modulus, and ¢ 1is the
damping coefficient. Thus we introduce damping proportional to
strain velocity.

Following the usual development of the Euler-Bernoulli equa-

tion [14, pp. 295-302]), we obtain

52 33
/=JoydA=51_§+c1
ax X 9t

and the equation (2.1) becomes
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(2.2) = ~apy - epty, - vy v £, t >0, x € [0,1],

Vit
where a > 0, 6§ >0, v > 0.
In setting up the operators and appropriate spaces below, we
shall consider only homogeneous boundary conditions of type Kk
introduced in Definition 1.9. This results in no loss of general-
ity of the methods, since any non-homogeneous conditions, includ- i
ing time dependent conditions (which can occur due to applied
moments and shears at the boundary) may be transformed (see [29])
in a manner that reduces the equations to ones with homogeneous
boundary conditions and an additional 'load" term included in f.
Within the framework we have established, a variety of ap-

proximations may be used. Recall that we rewrite the boundary-

initial value problem as the abstract equation

z2(t) =o/(q)z(t) + F(t;q) on I
2 (0)

20

and then approximate -t by a sequence of equations of the form

aNyNee) + FNtsq) on 2N

Nty
2N(0)

zN
0°

One way of obtaining different approximations clearly is by making
different choices for &/N. We discuss only the choice
N = pNypN pere, but other choices are possible. For example,
if Q[% exists as a differential operator, then pNoy 'spNgy JspN
can be used (see [27]).
Additionally, the choice of state spaces and the tu.m of the

evolution equation on these spaces leads to different natural
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approximations; it is this difference we wish to examine here.
In particular, for the equation (2.2), we shall write
[ 2(t) = @/(a)z(t) + F(a,t)
z(0) = Zq
0 1
2.3
(2.3) § W) - . .
-q; D "q;D 7 -a5
. 2 0
\ in X = Hk(a) x H
or, (when Y = 0)
F(q) 2(t) =o/(q)z(t) + F(q,t)
z(0) = Z,
[0 1 0
#@ = |0 0 -qD
(2.4) < L0 DZ 0 J
[ 1 0 o )
r'(q) = | © 1 quz
[ 0 0 1
Cin x = 1O x 1O x HO,
where Q = o, q; = B, dz = Y-

As we shall see,

(2.3) leads naturally to quintic spline

approximations which are discussed in section (2) and (2.4) 1leads

to cubic spline approximations which are discussed in section (3).
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Section 2. An Approximation Using Quintic Splines
In order to investigate and approximate solutions of
Yer = "Fyxxx © xxxxt *f
(2.4) y(0,x) = ¢(x)
¥, (0,%) = ¥(x)
where y satisfies boundary conditions of type k, we write
(2.4) as abstract equation in a subspace of Hz x HO
z(t) =o/(q)z(t) + F(q,t), t >0
(2.5)
2(0) = Zg

; _ T _ T _ T
with Z(t) = (Zl(t):zz(t)) = (Y(t,')’yt(t")) s ZO = (¢,1P) ’
and F(q,t) = (0,£(t,-;q))", and

0 1
H(q) =
4
-q1D4 'qu

where 9, = a, q, = §. In particular, for each of the boundary
conditions of type k, k = 1,2,3, we consider (2.5) in Hi x HO,
and Jy% to be of the form &/, with Dom(&%i) = Hi x Hi.

We derive the important properties of these operators which
will be used to prove convergence of the approximate identification
problem associated with (2.5).

We first consider the special case where & = 0 (no damping)
and denote the corresponding operators by j?k (i.e., ;Qk is
in in case q, = 0). In this case, we can define the operators

J?k in such a way that maximal dissipativeness can easily be

argued in the following way: we will show that &Qi and.Q?g

3 . ~ - - I3 . 3
are disspative, and &/i is closed; maximal dissipativeness then
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follows [25, Theorem 4.4, p. 87].
To extend the results to the case 6 > 0, we will also need
to prove dense inclusions of certain subsets of Sobolev spaces.

To do this, we will use the following lemma:

Lemma 2.1. Let </ (Dom(g/) € X) » X be linear, X a Hil-

bert space. If & satisfies the dissipative inequality

PP TP VU

<x,x> < 0 for every x € Dom(&/) and if R(&- AI) = X for

some XA > 0, then Dom(&/) 1is dense in X.

Proof: Suppose Dom(¥) is not dense. Then, there exists

a non-zero Xx € X such that <Xg,X> = 0 for every x € Dom(@/).

Since by assumption R(&/- AI) = X for some A > 0, it follows 0l

that Xg = (¥ - AI)yO for some non-zero Yo € Dom(). There- ;
fore, N
0 = <Xg,X> for every x € Dom(¥)
= <X(sYp>s in particular,
= <(H- ADyg,y,>
2

= <MYO’YO> - A‘Yo‘

< <M}'0’y0>’
which contradicts the dissipative inequality on . o

Corollary 2.2. Let o (Dom(&) = X) » X be linear, X a

Hilbert space. If o satisfies a dissipative inequality '
<¥x,x> < 0 for every x € Dom(or) and if R(&) = X, then
Dom(/) 1is dense in X.

Proof: R(/) = X implies 0 € p(2/), the resolvent set of

o But p(o) 1is an open set, and thus there exists a X > 0

such that A € p(of) and R(¥F- AI) = X. The above theorem now

e
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yields the result. o

Finally, we will obtain the desired results for the case
§ > 0 by taking maximal dissipative extensions of Jﬁi. We con-
sider the six cases corresponding to é?k, k =1,2,3, and &, .j
k =1,2,3.

Case 1. Consider the case corresponding to a simply sup- i

ported beam. Consider the operator in Z = Hi(a) x H0

e X'

., 0 1] . 2 .
& o= 4 on Dom(&,) = H] x Hj !
-aD 0 J * 4
where %
4 - 4. = " - - LA} 1
Hy = {¢ € H': $(0) = ¢"(0) = (1) = ¢"(1) = 0}
2 _ 2 _
Hl = {¢ € H*: ¢(0) = ¢(1) = 0}
2 _ oyl . . .
and Hl(a) = Hl equipped with the inner product
<"'>2,0L= <0‘DZ"DZ'>(J

Lemma 2.3, <£%12,z> < 0 for every 1z € Dom(J&&).
Proof:

: /21) (21) - 4
<j“/1\z2 ' \z,)7 T 2 '1%2,0 " <-aDzy,2,>,

]

1 1
2 2 . 4_ .
fO aD le Z, + IO a(D 242, ;;

0 for every 2z € Dom(ﬁ?l).

Lemma 2.4. R(;i/l) = 7.

Proof: We show that for every (f,g) € Z, there exists a

A ~ Z
(z9,7,) € Dom(&%l) such that £/1(22> = (;): take z, = f and




2, (x) = 6,(x) - x6 (1) - (x*/6 - x/6)GY(1) where G, (x) =

1 (X [S3 (52151 A 2 ’/
-5 fo fO IO 0 g(s)dsdsldszdss. Then (zl,zz) € H1 x H1 = .

z z !
N ~ 1 2 f !
Domﬁull) and.Q/1<zz) = <—aD4zl) =(g>. 7

Lemma 2.5. ;91 is densely defined. Hence H% is dense in

0

HY and H? is dense in Hi(a).

Proof: Corollary 2.2 and R(&%l) = Z and dissipativeness

of ﬁﬁ yield this result immediately.

Lemma 2.6. 591 is skew-adjoint: &?T = :Q/l.
Proof: First, we show.é?f > -Q?l. Let 2z = (zl,zz) €
Dom(;?l), and find all w, v such that <§?1z,w> = <z,v>, Thus

w,v € Z must satisfy
1 1 1 1
J aDzzzDzw1 - J aD4zlw2 - I aDzlezv1 - I Z,V, = 0,
0 0 0 0

where w = (wl,wz), v = (vl,vz). Or, integrating by parts,

1 1
(2.6) f 22\¢D4w v,) a[(DzZ)(Dzwl)]é - Ioa(nzzl)(nzw2+nz

v,)
0 1 1

3 1,._
- oD zlwzlol— 0, :;

where we have applied the conditions on 1z € Dom(é?l), w € Z. |

Thus, if .
4 '
v, = aD'w ;
) 2 , 1 v e Bt x g2
Dv1 = -D w2 !
i
b g
and if Wy(0) = wy(1) = 0 and w,(0) = w,(1) = 0, then clearly !

(2.6) clearly holds, or zé?l is adjoint to &91. We now show
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-&91 is the (maximal) adjoint operator; i.e., g}{ c -g?l:
let g € Dom(&?;), £ =_Q?;g; we show f = 1g21g and

g € Dom(&l) . We have

it

<z,f> <z,&?ig> = <19iz,g> for every :z € Dom(Q?l),

or, with f (f1’f2)’ g = (gl»gz)’

1 1

1
Jo a(Dzzl)(szl) + Jo 2, £, - afo(nzzz)(nzgl)

14
+ JO a(D zl)g2 = 0,

X Sy
J JO fz(s)dsds1 -

0
1¢s
1 . s 3 "o
XJOJO fz(s)dsdsl. Then hl(x) satisfies h1 fz a.e.,

hl(O) = hl(l) = 0. Integrate the above by parts to obtain

for every (zl,zz) € Dom(&?l). Define hl(x)

1 1
J a(D4z1)f1 . a[(Dzzl)Dfllé ; a[(Dszl)fl]é . IO(Dzzz)h

0 1

1 1 b2 2 14
+ L2, (Dh1E - 1(Dz,)E1} - jo a2 %) + [ a0'ze, 0.
But, f € Z implies fl(O) = fl(l) = 0; also, z € Dom(&?l) im-
. 2

plies z,(0) = z,(1) = (D°z)(0) = (D°2) (1) =2,(0) = z;(1) = 0,
and so this becomes

0% )+ g o [ (0%2,) (h - ad%gy) = 0 ;

PR C SR A T :

Since the first term is independent of the second, this is equi- '

valent to the pair of equations

1, ;
IO(D 2) (£ + g5) = 0 !

and

1
[O(Dzzz)(h1 - ab%g) = 0.
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2 g 4 4 _
Now, for every v € Hl’ there exists z, € H1 such that D zy =V
so that f1 * g, annihilates all v € Hf and so f1 * g, < 0.
- . 2
So we have g, = fl € Hl'
Likewise, for every w € HO, there exists Z, € Hi such
that Dzz2 = w and so (h1 - angl) annihilates all w € HO.
.. . 2 _ 2 1 -
This implies h1 - aD"g, = 0. Hence, D g, =gy
1¢s X
1 (JXJSI J J 1 3001
= f,(s)dsds, - x f,(s)dsds, ), D g, = = f (s)ds -
a 0l 0 2 1 0’0 2 1 1 a\g 2
4

1 $1
JOJO fz(s)dsdsl>, and D g, =

is absolutely continuous and D g € H

fz a.e., which implies D3g1

TP

0 4

and so g, € H', Further-
2 1 2
more, (D%g,)(0) = 2 h (0) = 0 and (D°g)(1) = : hy (1) = 0.

This, along with the fact that g € Z = HS x R, implies
4
81 € Hl'

Thus, g = (g;,8,) € Hi x Hi = dom(iyl) and (ﬁyf)g = f =

-ﬁflg, or Q?f < ﬁ&%l. This proves the desired result, since

ot o o/ - )

=%

Lemma 2.7. g?l is a closed, maximal dissipative operator,

and is the generator of a C0 semi-group of contractions on Z.

Proof: That &91 is closed follows from
Trk = % = (o V% = /% =
W= (N = (I = T =

We can also establish maximal dissipativeness easily by noting

that

A

<y *2,2> = <-jflz,z> = 0.

[

This implies that Q?l is maximal dissipative by a theorem of

Krein (25, p. 87]. That.ﬁ?l is a generator then follows by
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another result [25, 4.5, p. 88].

Remark. We have shown that Hi is dense in H2 n Hé in

the l'lz,a norm by showing that.Q?l is densely defined in Z.

In this case the result can also be argued using the fact that

2 q Hé is self-adjoint in HO and the re-

sults of Goldstein [18, p. 86].

A with Dom(A) = H

Remark. Since j?l is skew-adjoint, we could also have used
Stone's theorem [18, p. 22] to argue that j?l generates a C,
group on Z. However we emphasize the role of dissipativeness

since we require this in the case § > 0.

Case 2. This case corresponds to a beam clamped at both

ends. Consider the operator in 2Z = Hg(a) x HO given by

y [ 0! F
= on Dom( ) = H, x Hj
2 ~op? 0 2 2 2
where
4 4 ' - - -
Hy = {6 € H': ¢(0) = ¢'(0) = ¢(1) = ¢'(1) = 0}
Hy = {6 € H2: 9(0) = ¢'(0) = (1) = ¢'(1) = 0}
and

Hg(a) = Hg equipped with the inner product

2 2
<¢,w>2’a <aD%¢,D¥>,.

Lemma 2.8. <é?22,z> < 0 for every :z € Dom(&?z).
Proof:

<ﬁ?22,z> = + <-aD4z

€2292172.a 1°%22%0
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1
- J aDzzzDzzl ; oL[(Dszl)zZ]%) + a[(Dzzl)(Dzz)]é

1
- J aDzz Dzz
0 1 2

= 0 for every 1z € Dom(i?z).

Lemma 2.9. R(&%Z) = 7.
Proof: We show that for every (f,g) € Z, there exists a
(z,,2,) € Dom(,) hthtg?/zl=(f-tk = f, and
1°2> om( 2 suc a 2\22 ) ake z, , an

2 3
zl(x) = Gl(x) - (3x° - 2x )Gl(l) - (x

3-xz)Gi(l) where

1 (X[S3[52(51

Gl(x) = -3 Iofo IO“JO g(s)dsdsldszdss. Then, (zl,zz) €
4 2 ~ 5 (*1Y 22\ _ (f .
H2 x H2 = Dom(&yz) and Q¢2(27) = (-aD421> = (g)' |

A~

Lemma 2.10. &/2 is skew-adjoint: Q?; = -&/z.

.

Proof: First we show &?3 ) -Q/z. Let =z = (zl,zz) € Dom(i%&)

and w = (wl,wz) € Dom(&?z). Then we show <& Z,w> = <z,—&/2w>:

2

~ . L2 2 b g
<£/2z,w> - <z,-j/2w> J aD“z.D Wy * [0 -a(D zl)w2

0 2

1
- fo a(Dzzl)(-Dzwz)

1 4
- JO zZ(aD wl)

= 0.

~

Thus, -£72 is adjoint to & Now we must show Q%S c -&92. '

5
Let g € Dom(&/%), f = Ligg; we show f = -&?zg. We have

<z,f> = <z, hg> = <;?Zz,g> for every 2z € Dom(&?z), or,




1 1 1 1
2 2 2 2 4 _
J aD”z,D7f, + J zzf2 - aJO D z2,D7g, * GIO D 2,8, 0

i

for every 1z = (zl,zz) € Dom(;}z). Denoting hl(x)

X (s
I J 1 f,(s)dsds + ax + b, where a,b are arbitrary, a € R, b € R,
0’0 -

X
and hz(s) = J fz(s)ds + a we integrate by parts to obtain
0

1

1
J a(D4zl)f1 + a[(Dzzl)(Dfl)]é - a[(Dszl)fllé + J (Dzzz)hl
0 0

1

1
¢ [z,h,15 - [(Dzy)hy]g - a[ocnzzz)(nzgl) + [ap*apyg, =o0.

70

2 0

But, f € Z implies f, € H and fz € H, so the first two

1 2
bracketed terms vanish; likewise =z € Dom(&?,) implies the last
two terms in brackets vanish. Thus, we have

b Y(E, + g,) + 1(D2~ )(h, - aD’g.) = 0
0 a(Dz))(f; * g, o f27th ' 81 y
Since these two terms are independent, this is equivalent to the

pair

o

1 4
o JO(D zl)(f1 + gz) =
and

1
IO(DZZZ)(hl - an’g))

)
o

for every :z € Dom(;&é) = Hg x Hg. Thus f1 * g, = 0 implies
2
gy = ~f) €M
2 _1. _1[*> 3 _1 (%
D gy = & h1 =3 IOIO fz(s)ds + ax + b, D g1 = 3 . fz(s)ds + a
. . 4 _ 1 0 . . 4
is absolutely continuous, D 81 ° 3 fz €H implies g, € H and

g €2 implies g, € H3, so that g, € H® n H = Hy. Hence

i




g € Dom(¥,) with.ﬁygg = f = -ﬁ?zg, or_d7§ c -;92. Thus

Lemma 2.11. &92 is a closed, maximal dissipative operator

and is the generator of a CO semi-group of contractions on Z.

Proof: Identical to the proof of Lemma 6.

Remark. The statement Hﬁ is dense in Hg (in the usual
H2 norm) follows directly from the fact that Cg = {¢ € c”:
¢ has compact support ir (0,1)} 1is dense in Hg and

% 4 2
C0 c H2 < H2 (cf: [30, p. 91]).

Case 3., Finally consider the case corresponding to a canti-

\
levered beam. Consider the operator in Hg(a) x HO given by

N 0 1 - i
;Vs = [ _pt . ] on Dom(Q/s) = Hy x Hi .
where
H3 = Lo € HY: 6(0) = ¢7(0) = o"(1) = ¢ (D) = 0}
Hy = Lo € HP: 9(0) = ¢7(0) = 0)

and Hg(a) is HZ equipped with the inner product <ty B

3

Lemma 2.12. <J?32,z> < 0 for every 1z € Dom(ﬁ%s).

Proof:

A _ _ L4
<1Ygz,z> S <2p,2y>, < aDzy,2,>,

1 1
IO a(Dzzz)(Dzzl) + [0 - a(D4zl)z2




g € Dom(&¥,) with %g = f = -ﬁ?7g, or_d7§ = -&?2. Thus
¥y =¥,
Lemma ..11. ;92 is a closed, maximal dissipative operator

and is the generator of a CO semi-group of contractions on Z.

Proof: Identical to the proof of Lemma 6.

,
Remark. The statement Hi is dense in H, (in the usual

-

N

P

H° norm) follows directly from the fact that C: = {¢ € C":

¢ has compact support in (0,1)} 1is dense in Hz and

Cw

]
= Hg < H, (cf: [30, p. 91]).

Case 3.+ Finally consider the case corresponding to a canti-

2
levered beam. Consider the operator in Hg(a) x HO given by

& g 1 o a2
/= on Dom(& .,) = H, x H
3 -aD4 0 3 3 3
where
4 - 4. = ! = " - 1! -
Hy = {6 € H': ¢(0) = ¢'(0) = ¢"(1) = ¢"'(1) = 0}
2 2
H3 = {¢ € H°: ¢(0) = ¢'(0) = 0}
and Hg(a) is Hg equipped with the inner product «<.,.>, o
<aD2.,D2 >

Lemma 2.12. <$932,z> < 0 for every =z € Dom(&%s).
Proof:

o 4
<5Y32,z> = <zy,2p5, % <~aD’z,,2,>,

1 1
2 2 4
IO a(D zz)(D zl) + !O - a(D 21)22
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1 2
f a(d’z,) (D°z)) - al(0®2))z,13 + al(p?2)) (Dz,)1;
0 s

1
) IO a(p’z)) (0%z,)

0 for every 1z € Dom(&%s).

Lemma 2.13. R(&/S) = Z.
Proof: We sltow that for every (f,g) € Z, there exists a

- /2
(z1,2,) € Dom(;/s) such that 5%3(21> = (2): take z, = f, and

z,(x) =G CxGny - (2 - %61y wh
‘—1(?\) = I(X) v 1( ) (T —2-) 1 (1) where

X(SgS, 05, 4 ?
Gl(x) = JOJO JO J g(s)dsdsldszdss. Then, (zl,zz) € HS x H3 =
Dom(g} ) and f% (Zl) = ( 32 ) = (f>
3 3 Z5 -ozD"’z1 g/’
Lemma 2.14. ,&3 is skew-adjoint: _SX’;g = -,@7'3.

Proof: First we showﬁ}g o -JXA/S. Let =z = (21,22) € Dom(i/s)

~

and w = (wl,wz) € Dom(,&’s). Then we show <ﬁ32,w> = <z,-ﬂ/3w>:

1 .1
2 2., ) 4 .
JO aD zzD Wyt JO a(D 21)\/\2

<_Q/32 S, W> - <z, -_M3w>

o2 2., 1 4
4{0 a(D zl)(~D “2) - IO zz(aD wl)

0.

Thus, "&'3 is adjoint to f/s. Now we must show—WA'g c -15/3.
Let g € Dom(&g), f = Mgg; we show f = -B'\/sg. We have

~ ~

38> = <M32,g> for every =z € Dom(-&s), or,

1

1 1 1
2 2 2 2 4 -
[o a(D°z1) (D°£)) + fo 2,f, - afO(D z,)(Dgy) + afO(D 1), = 0

for every 2z = (zl,zz) € Dom(Q?s). Denote by h(x) the function

ol Lm_k_.m#_.nJ

Lt e abe Neim.
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X 1S4 1 1 1
h(x) JOJO fz(s)dsds1 - xJ f,(d)ds - jOJO fz(s)dsds1

0

jlf()d
+ s)as
0 2

satisfying Dzh = fZ’ h(1) = h'(1) = 0. Integrate by parts to ob-

tain
1y 2 1 3 1 1 5 :
IO a(D*z )E, + ol(D°z)) (DF)) 15 - «l(D’z))f ] * fO(D z,)h

. 1 L 2 1 4 .
[Zz(Dh) ]0 - [(Dzz)h] - o O(D 22)(D gl) + a O(D Zl)gz = 0.

But f = (fl,fz) € Z 1implies fl(O) = fi(O); likewise,

z € Dom(Jgé) implies that 21(0) = zi(O) = zf(l) = zi"(l) = 0
and zé(O) = zz(O) = 0. Thus the above becomes

1 4 L. 2

JO a(D zl)(f1+g2) + JO(D zz)(h - oD gl) = 0.

Since the first term is independent of the second, this is equi-

valent to the pair

1 4
fo(D zl)(fl + gz) =0
and
L 2 2
f (D°z,) (h - aD“gy) = 0.
0 .
Thus, f1 g, = 0 which implies g, = -f1 € Hi. Furthermore, ‘
2 o 2 1 3 1 /(X
h - aD g, = 0 implies D g1 % 3 h, D g = 3 (IO fz(s)ds - 3

1
f fz(s)ds>, and D4g1 = é fz, so that D3g1 is absolutely con-

0 ‘
tinuous and D4gl € HO which implies g, € H4. Also (ngl)(l) = )
Sh(1) = 0 and (D’g)(1) = L h'(1) = 0. This, together with the i
fact that g = (g;,g,) € 2 = H: x H', implies that g € Hg x HE = %

Dom(ﬁ?s), with (jgg)g = f = ~£93g, or j?g c -i?s. This proves
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the desired result, since we already have.ﬁ?g o -Q?S. o]

Lemma 2.15. &93 is a closed, maximal dissipative operator

and is the generator of a C0 semigroup of contractions on 2.
Proof: Identical to the proof of Lemma 6.

Case 4. Now consider the general case corresponding to a
simply supported beam with internal damping. Define the operator

.gg in Hi(a) xgY = 7 by

0 1
¥ = { ] on Dom(Jva) = ¥ « Hi

where o €R, a >0, § €R, § >0,

Y = (o €n%: 6(0) = (1) = 0)
4
Hy = {6 € H': 9(0) = ¢"(0) = o(1) = ¢"(1) = 0}
2 . 2 . . 2 2
and Hl(a) is Hl with the inner product <ty T <gD®.,D%.>

0.

4 is dense in HO and by Lemma 2.5

1
above, H; is dense in Hi(a); thus sx& is densely defined.

By the results of Section 1.2, H

Lemma 2.16. .

1 is dissipative.

Proof: Let 2z = (zl,zz) € Dom(Jwa). Then,

<Mz,z>

4 4
2302172, * <TOD2y,25>p + <-8D7z,y,2,3,
1 1 1
- 2 2 ok _.nd
aIO(D 22)(D zl) + fo( aD zl)z2 + [0( 6D zz)z2

1

= ~a(10%2))z,03 - (D2 (Dz,)1)) - cfo(nz

22)2

1
- 81020210 - 1P D2 1g) = 5[ (072

0 for 6 > 0. ]

| A




Remark. Note that we required (Dzzz)(O) = (Dzzz)(l) = 0

to establish the dissipative inequality, and this is one reason
for including these conditions in Dom(»&&).

Jx& itself does not generate a CO semigroup on Z, since
R(Jﬂ& - AI) # Z. However,.nq does possess a maximal dissipative

~

extension Q/I which is closed (cf: [25, p. 87}). In the case
§ = 0, we have seen that the maximal dissipative extension is 591.
Since Dom(in) is dense in Z, the following dense inclusions

hold:

Dom( %) < Dom(f:/l) cz,

and the maximal dissipativeness of &Vl is sufficient to ensure

that it is the generator of a C semigroup of contractions on Z.

0
Case 5. Consider next the operator in Hg(a) x RV given by
o 0 1 o 4 4
= on Dom( ) = H, xH,, o,8§ > 0.
2 -op? -sp? 2 2 2

This corresponds to the beam clamped at both ends as in Case 2,

but with internal damping included.
Lemma 2.17. JXE is dissipative.

Proof: See Lemma 2.16. The same integration by parts yields :

|
1 2

<JW%z,z> = -GI (Dzzz) <0 '

0
for every 1z = (zl,zz) € Dom(Jwa). o
Since R(J&E - M) # Z, we will again need to take a maximal

~

dissipative extension &12 where

Dom( ¥,) < Dom(;yz) cZ

"‘ N a . L 4
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are dense inclusions. Lemma 2.18 and a theorem of Krein [25, 4.3, K
p. 87]) are sufficient to guarantee the existence ofJX’z. In the
case 6 = 0, we have seen that ﬁfz =£22. By another standard re-

sult ([25, 4.4, p. 87]) ;QZ is closed, and generates a C0

semigroup of contractions on Z.

Case 6. For the final case we wish to consider, we take the

operator in I = Hg{a) x RO defined by o
o 0 1 o 4 4
= on Dom( ) = H, xH
3 ~o0® -t 3 3703

where i

Hg = {6 € HY: $(0) = 6'(0) = ¢"(1) = ¢'"(1) = 0},

D

2 2 _ _ .

Hy = {¢ € H": ¢(0) = ¢(1) = 0}, !

and |

Hg(a) = Hg equipped with the inner product

<> = <aD2-,D2->

2,a 0 }

Lemma 2.18. Jﬂ% is dissipative. i
i

Proof: See Lemma 2.16. The same integration by parts yields

1
<j¥31,z> = -6[ (Dzzz)2 < 0 for every z = (z,,z,) € Dom(.2/).
0 - 1272 3

ﬂg has a maximal dissipative extension j?s, by the theorem of
Krein [25, 4.3, p. 87], and since Dom(Jﬁ%) is dense in Z,
Dom(ﬂ/s) c DOm(ﬁks) c Z where all inclusions are dense. Thus

(25, p. 88] ﬂ?s generates a C0 semigroup of contractions on Z.




We shall require certain dense subsets of smooth functions
in Dom(j?k) to apply Proposition 1.5 (Trotter-Kato theorem).

To construct these dense subsets, we will use eigenfunctions of
4 4
D K
We first note that if u € Hi, k =1,2, or 3, then

on Dom(D4) = H

max Ju(x)| < K|ul,,
and

|u(x1) - u(xz)l < K VXX, |u|2.

These inequalities follow from an application of the Cauchy-
Schwartz inequality and from the fact that for u € Hi, lul; <

K]u|2 for some constant K (this is true because |-[1 and

1 and H2 norms respect-

2
k’

|-}, are equivalent to the usual H

ively on Hﬁ and |u| 1 < fuf 2). In particular, for u € H
H H
X

x1,X; € 10,11, u(xy) = u(x)) + J 2ut(g)de  implies

X

X
utx) -uxp 12 < 17w coael?
X
1

I A

|x2—x1| Iu'lg, by the Schwartz
inequality,

2
l

2 2
Ixg-xq | July < K% lxy,-x | Juls.

Then we obtain from this (with Xy = 0) that

lu(x,) | < Kvx; |ul, for every x, € [0,1]

which implies the first inequality. Thus an application of the
Ascoli Theorem (see [38, pp. 249-250]) implies that from every
sequence {un(x)} which is bounded in the norm of Hi, it is
possible to select a uniformly convergent subsequence. Addi-

tionally, for any two elements u,v € Hi,




2
|<u,v>y| < maxful max{vl <K°fuf,|v[,.

Now let Bk’ k = 1,2, or 3 be the operator D4 in Hi with
Dom(Bk) = Hi. Bil exists (see proofs of Lemmas 2.4, 2.9, and
2.13), and

<B}_(1u,v>2 = <u,v>, for every u,v € Hi.

-1
k

tor on Hi: given a bounded sequence {un(x)} in Hi, we can

B is clearly symmetric and furthermore it is a compact opera-

select a uniformly convergent subsequence {Vn(x)}, and

-1
< - - > = < - >
Bk (Vn Vm)’vn Vm”2 Vn Vm’vn Vm 0

1 2
Jolvn-vml dx — 0,
and thus [38, p. 206] Bil is a compact operator from X = Hi
into X.

For the moment, fix k = 1,2, or 3. Since B;l is symmetric
and compact, standard results [45, p. 343] imply that Bil has a

complete orthonormal set of eigenfunctions Y and associated
-]

eigenvalues A, and f = % <f,¥ >,¢, for every £ € Dom(B,) = Hy.

We have Bkw = unwn, where M, = 1/An.

o)
We can construct a dense set in HO

Then, since for every f € Hi,

by taking ¢ =/§; .
<f£,9. >, = <D°f Dzw > = <f D4w > = <f,u v >, = <f,0_>. Vi
’¥n" 2 ’ n 0 ' n 0 *Mn%n”0 %070 Y¥n:

we have IZ <,y >,9, - f|, —> 0 implies that

lz <f,¢ >06, - flz —> 0, which implies, since the norm |-|2 is

Lo e
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m
stronger than the I-\O-norm, that |} <f,0 > - fly — 0 for
1
every f € Hﬁ. As a consequence, the set span({¢n}) is dense

in HO, since Hi is lolo-dense in HO. Also, B, ¢ =u¢ ~ for

n=1,2,...
The smoothness of the functions wn, ¢n (we shall only re-

quire H6 smoothness) follows from the fact that Biwn = uiwn

8

implies that wn € Dom(Bﬁ) < H ', and similarily for ¢

n

Thus for our dense subsets of smooth functions in Z = Hy xH",

2
k
we are led to define

v; ( 0
", 7 | o PV T

-]

N _ N , N o - N
Let 27 = span{\rl’j}:j=1 U span{yz’j}j=1, and Y= ;J 2". C(Clearly,

by the above, 2 is a dense subset Z, and ¥ c Dom(iyk) c
Dom(ﬁ?k) c Z.

k
constructed from the ¢j will clearly be a different set of func-

Remark. The set {¢j} associated with g1 and the set @

tions for each k. Since their properties are tue same, we de-

note these by the generic symbols {¢j} and Z vhere it is
understood by context that these represent the functions in Hi
and Hi X HO respectively.

We require one further property of &£ to apply Proposition

1.5 (Trotter-Kato). We must show

(2.7) () - 2,1)9 =17 for some A, > 0.

0

-~

First observe that ka - AOI is invertible for AO > 0, since.n?k

generates a contraction semigroup on Z, and further that IVk =J¥i

when restricted to Dom(%,). Then since Jc Dom (¥} ),

-~

TR
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(o, - WD = (4 - 212

-~

In fact, we show that (& AOI)9 =9 and the result (2.7)

-
follows from the denseness of &£ in 2Z.

Lemma 2.19. (&’k - 2,2 =D for some Ay > 0.

Proof: a) (;ik - )\OI)QC@ is trivial.

b) (/) - A)@>9D: Since () - A D) 1 exists, it
suffices to show that for a typical basis element this holds. We

do the typical basis elements Y1 3

and Yz,j separately. We

show that

i) there exists a 1z = (zl,zz) € & such that
(-dk - )\OI)Z - YZ,J = (¢J)-

This holds iff (sa/l - ADz = v,

)]
) -Aozl + z, = 0
iff 4 1
-aD zy - 8§D z, - AOZZ = ¢j
. 4 4 2 _
iff oD zq - 6A0D zq - AOzl = ¢j

. 4 2
iff -(a + GAO)D zq - Aozl = ¢,

with zy = a¢j, since D4¢j = “j¢j’ j 21, this can be solved iff

2
a(-(a + Gko)uj -AO) =1, or,

a = — 1
AO + (o + Gko)uj
Since all quantities are positive, this can always be solved.
For the other typical basis element Yl,j = (wj>, we must show
that
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ii) there exists a z = (zl,zﬂ) € 2 such that

(571 - AOI)Z =Y which holds

2,1’
iff (;/1 - AOI)Z = Yz j
. -Aozl + 22 = wj
iff 4 4
-aD 2y - §D z, - AOZZ = 0;

. 4 2 _ 4 .
LEE - (aeA()D 2y - Agzy = DTHL ¢ Aguss

with 2z, = awj, this can be solved for (z4,z,) € 2 (using

D4wj = uy¥5)
5
iff -(o +610)uja - Xaa = éuj *
or
e 6“j + AO .
(o +6A0)uj + AO

Since all quantities in the denominator are positive, this solu-

tion is possible (a finite) for any AO > 0. o

Thus for each R = 1,2, or 3 we have a set 2 such that
Dc Dom(;a!k) c Dom(,&/k) cz,

where all inclusions are dense, and

() - 2DD = (¥ - 1D =2

for any AO > 0.

We can summarize the previous results. The operators JX&,
4 4

k < Hg
have a maximal dissipative extension..d;/k on Dom(ﬁfk) where

k = 1,2,3 defined in Hl(a) x H' with Dom(&) = H

Dom(Jﬂk) c Dom(jyk) c Z densely. Furthermore, for each operator

A
i
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~

o4

K’ k = 1,2,3, there exists a set & consisting of smooth func-

tions such that 2= Z and (Iz/k - A9 = I,

We now consider the approximate problem. Define for each
k, k =1,2,3, the spaces Z and ZN by ]

N

! i
N e speNy <528, 7= 2(@) = z(w) = (o) x K

\
(recall o = ql), and let Ph(q) be the orthogonal projection

PN(q): I —> ZN. The approximate problem corresponds to solu-

tions of

NNy + N,

zlg(q)

Nie)

¥ (0)

where 2/ (a) = PN () #(@)PV(a), FN(a,t) = P (q)F(q,t), and X
25(a) = P ()zg(a). i
We give a concrete realization of these approximating equa-
tions at the end of this section, along with numerical results in
Section 4. Our first goal is to prove convergence of EN — q
in the context of Chapter 1. That is, we prove that solutions of
the approximate identification problem (IDN) converge to solutions
of the full identification problem (IDA), using Proposition 1.4.
We first prove the approximating subspaces converge in the

appropriate sense.

Lemma 2.20. Assuming (HQ), the projections Ph(q) converge '

strongly to the identity I in Z as N+ «, for k=1 or 2.

Proof: Let 2z = (zl,zz) €Z where &2 1is the dense subset 4

in Z defined in Lemma 2.19 for k =1, respectively. Then

N
PN(q)z = (z?,zg) = (P?zl,Pzzz), where P

2
N . . .
3 is the projection of
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the first coordinate onto Si(Ah) in the l-[z 4 Porm and Pg

is the projection of the second coordinate in the norm,

l'lo
Then,

N 2 N N 2
IP (Q)Z’zl IPSZI- + |P222'22|0

z |2
1'2,

| A

(V8 kg o @HD%21 % + (/a x

6,6
3’0 (N‘ ID zlo)’

1
2,0%
where we have applied Lemmas 1.18 and 1.19, which implies
IPN(q)z-zl + 0 as N+ o for z € Z But since Z is dense in
Z and the projections PN(q) are bounded operators, it follows

that IPN(q)z-zl —> 0 for any =z € Z. o
We may now state and prove the main theorem of this section.

Theorem 2.21. Let (H(, hold. Then the semigroups T(t;q)

and TN(t;q) generated by &?k(q) and &/i(q) respectively,
k =1 or 2, satisfy |[[T(t;q)|l <1 and IITN(t;q)H < 1. More-

over, for any sequence {qN} converging to q* in Q, we have
N,.. N o .
|T (t;q )z - T(t;q*)z| —> 0 wunifornly on [0,T]

for each z € Z,

-~

Proof: The bound ||T(t;q)]] <1 follows because ¥, gen-
erates a C0 semigroup of contractions on Z. Also by the re-

marks in Chapter 1, Section 1, it follows that HTN(t;q)H <1. To

establish the convergence results, we apply the Trotter-Kato
theorem (Proposition 1.5). Let 2= Z(q"‘),gN = ZN(qN); also

~, J
take &= ﬁfk(q*) and ;/N = ﬁfﬁ(qh). Let nN: Z2(q*) — Z(qN)

be the cononical isomorphism between 2(q*) and 2(q"). Then '

qh-——a q* implies IﬂNzl —> |z|, verifying hypothesis i) of A

Trotter-Kato. Thus it remains to verify iii). We have already »




defined for each k a set & such that (,&’k(q*) - 2@

is

dense in 4. To establish convergence, we see that for each

z = (27,2,) €92 (suppressing the notation ﬂN)
2.8) 12NNz - wamz] = [PV 2PN Y - oan) 2]

< 1@ - 2q*))PNeY 2|

We bound each of these terms separately.

The second term can be written explicitly as

[0 1
v N N, N
2(q*) (PN (a")z-2) = . AR CAICRERS
| -aiD -q3D
{ ZN -2
. 2 2
4 N 4 N ’
—a* -~ - * -
| "93D (29-z9) - a3D (25-2))

e - . ;
where Ph(qh) = (z?,zg), and zh = PNz N

are the projection operators of Lemmas 1.19 and 1.18. Thus,

| o#(a*) (PN (™) z-2) |2

N2 4, N
< lzz‘zzlz,q; + {07 (z1-27) 1
4, N 2
e laglIpt ez 1)
2 1.8,.6 2 1,2,.6
: <af k3,2 ID7z,00 + {af x5 ,(@7ID
x

1,26 2

R

by an application of Lemmas 1,18 and 1.19. Thus,
\
| #(q%) (PN (aMz-2)| +0 as N+ =,

1 3215 Z T P§zz, where PN

30 P

N 2 ord N o N 2
'Zz'zzlz,q; + laD"(z7-2;)+a3D" (2;-2,) [

zylo

+ | (PN M z-2) ] + [PV -1 a2l

N
2

-

-
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For the last term in (2.8), we have PN(q) + I strongly
on Z. Convergence of the first term follows once we write out
explicitly

N N, N

(H(q) - H(q*))P (q7)z =

N 4 N

N 4 N N
-(a7-91)D zy - (q,-25)D"z;

and note that D4zN > D4z1 and D4z§ - D4z2 in HO and

1
qN + q*. Thus Trotter-Kato (Prop. 1.5) yields convergence of the
semigroups ITN(t;qh)z - T(t;q*)z| - 0 wuniformly on [0,T] for

each 2z € Z. o

Remark. Note the role that the dense subsets &2 played in
the proof, in addition to possessing the required smoothness to
apply Lemmas 1.18 and 1.19. Since 9c Dom(.@?) c Dom(&?i), we
were able to use the form of .Qé explicitly in the proof since

ﬁ &fi restricted to Dom(J&E) is .Qé itself. Thus the Trotter-

Kato approach does not require that we know.d?i explicitly. o

A Cirect application of Proposition 1.4 along with the com-

pactness assumption (HQ) yields convergence of a subsequence of
the solutions aN of the approximate identification problem to a
solution q of the original identification problem (IDA).

The case where vy > 0 in (2.2) follows easily from pertur-

bation theory. In this case Jﬂk in (2.5) becomes

. 0 1
k -ap® -ept-y |
1

Consider 31 = jkk + B, where Jy% = [—aD4 -6D4] as before,
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-~

and ﬂfk is its maximal dissipative extension, and B = (8 _S).

31 is a bounded perturbation of ﬁ?k, since |Bz| < lezlo for

every z = (zl,zz) € Z. So standard perturbation results [18,

pP- 33] imply that .%1 generates a C semigroup on Z., It is

0
easily verified that ( 2ﬂ< - AM)2=9. The proof of Theorem 2.21

remains essentially unchanged by the inclusion of this new term.

We now turn to a concrete realization of the approximate

identification problem. Let B? be the quintic B-spline satis-

fying the appropriate boundary conditions, as defined in (1.16)-

(1.18), and recall that (YN are a basis for Si(AN). As a

i“i=0
basis for zN = Si(Ah) x Si(AN), then we take {Bi}gfal, where
( N T . .
N (B.,,0)", 0 <i <N
By = N T o
i . : .
(O’Bi-(N+1)) , N+1 < 1 < 2N+1

Our approximating equation
Ny = NNy o+ PNE(

is then defined by o = P /P (with F = (0,£)7), where PV

is the orthogonal projection of Z onto ZN. To obtain a reali-

zation of this method, we seek a zN(t) € N satisfying

~ N
<tMee) - NNty - PNE(),0> = 0 for all €z

Since zN(t) and ¢ € ZN, they have representations zN(t) =

\
y w?(t)B? and ¢ = EV§B§. The condition above thus reduces to
. N N N N _ NS _
<y O Y wj;%Bj F,8;>=0

for 1 = 0,1,...,2N+1, which in turn is equivalent to the vector

[ . : o ROTRY 5 N TP YT IR R VP

s chian e




61

system of ordinary differential equations

Nty = KNNey « rRNF(1)
(2.9) :

QMM 0) = RNy
, N,... _ N N N . _.N N, N _
where w (t) = (uo(t),...,h2N+1(t)), Qij = <Bi’Bj>’ Kij =

<B§,;/B?>, (RNF)j = <B?,F>, and Y = (¢,y) 1is the vector of ini-
tial conditions in (2.4)., For the examples under consideration
(as well as others presented below), the matrix structure in the
approximating equations facilitate computations. In particular,

one finds

v o
1
Q_ 0 N
Q0
, Ny, . 2.N 2N Ny  _ .gN N
where (Ql)ij a<D“B;,D“B;>,, (Qz)ij <Bi’Bj>0 and
Ny
N 0 K]
= N N
K2 hs
: N _ 4N N o . pd NN N
with K1 Ql’ (Kz)ij <-aD Bi’Bj>0 (Ql)ij’ and
Ny = e apBeN N NN D 8. N T N
(KS)ij = <-48D Bi’Bj> <YBi,Bj>0 a(Ql)ij Y(Qz)ij, where one

uses integration by parts and the boundary conditions to establish

these identities. Thus the equation in (2.9) reduces to

(2.10) N = MWty + V(o)
where
6N - 01 N I
@] - FQh ) - vr

and




1N

N RVE =

- @

F

r 1 N = ! 1 = J
with fj <f,Bj>0, J 0,1,...,N.
The approximate displacement yN(t,x), used in the cost func-

tional J, is given by

YN(t,-)

e~
o

N N N N
zl(t) = wi(t)Bi.

The matrices QT and Qg have a banded structure and can be used
efficiently in solving (2.10). More will be said about this in

Chapter 4.

Section 3. An Approximation Using Cubic Splines

In Section 2, we solved the approximate identification prob-
lem (IDA) using state approximations based upon quintic splines.
In this section, we lower the smoothness requirement for the
basis elements by rewriting (2.2) as an abstract equation which
permits the use of cubic splines. To do this, we consider here
only the case where & and <y are zero (no damping), with bound-
ary conditions of type 1, corresponding to a simply supported
beam. Then we may rewrite (2.2) as an abstract equation in !

Z = HO x HO x HO of the form

3(t)
2(0)

H(q)z(t) + F(q,t), t >0, !
(2.11) |

20

where z(t) = (z,(t),2,(t),z35(t)) = (y(t,),y, (t,-),y,, (t,-)),
25 = (¢,¥,6,.), and
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0 1 0
/(@) = | 0 0 -/3 D
0 /& pn° 0

on Dom(&/(q)) = H® x H® n Hé x H® n Hé. Here q; = a.

We first wish to prove that o/(q) generates a C0 semigroup
on Z. The following lemmas will do this, starting with dissi-

pativeness of (q).

Lemma 2.22. (/(q) - wl) 1is dissipative for « sufficiently

large.

Proof: Let v = (Vl’VZ’VS) € Dom( &(q)). Then,

<(H(Q)-wI)v,v> = <v,,v >, + <-va Dzvs,v > + </& D%v

2 2:V3>p

2 2 2
- wlvllo - wlvzlo - wlvslo

2 2 2
= <Vyuvy>g - efvyly - el - elvslg

| A

2 2 2
|V2|OIV1|0 - “"VIIO - “’lvzlo - w|v3|0

|V2|g |V1|3 2 2 2
St = - elvylg - elvylg - wlvslg

1 2 1 2 2
= (7 - w)lvllo + (7 - ‘”lezlo - w|V3|0

<0 for w > 1/2. o

To establish that /(q) is a generator of a C semigroup, we

0

will show that ©/(q) is closed and R(/(q) - AI) = Z. For

simplicity, we first partition the operator /(q) as




(q)

i
[a> BN o}

where

B(q)

on Dom(B(q)) = H2 n Hé x H2 n Hé, and derive some results for

B(q) which will be used to show that o/(q) 1is a generator of a

C0 semigroup.

Lemma 2.23. B(q) 1is a dissipative, skew-adjoint operator

0 0

and generates a CO semigroup of contractions on Y = H x H',

Proof: Dissipativeness follows easily from an integration
by parts. Let v = (vl,vz) € Dom(B(q)); then, <B(q)v,v> =

<-vo D2v2v1>0 + <v/o Dzvl,v2>0

It is easily verified that -B(q) 1is adjoint to B(q)
(B* o -B):

= 0,

<B(q)v,w> - <v2-B(q)w> <-vo DZVZ’W1>O + <o Dzvl,w2>0

2 2
- <v1,/3 D7w,>) - <v,,-/a D w1>,

We show B* € -B, let g = (g1,8;) € Dom(B(q)*), f

(£,,£,) =
B(q)*g. We show f = -B(q)g and g € Dom(B(q)). We have

<v,f> = <v,B(q)*g> = <B(q)v,g> for every v € Dom(B(q)),

or,

1 1 1 2 1 2
IO vefy * IO v £, + [0 Yo (D volgp - IO Yo (D vylg; = 0

0 for all w = (wl,wz) € Dom(B(q)).




for every v € Dom(B(q)). Let hl(x) = I

1 .
JO fl(s)dsds1

1 4 XS4

X IOIO fl(s)dsds1 and hz(x) = I [ f2
1 Sy

X f f fz(s)dsdsl. Then integrating the terms in the above equa-
0‘0

tion by parts yields

1

Jl D%y, )h, + [1 D%y )h. + Jl V& (D ] f /a(D%v. )g. = 0
oD VI ] (Dvpdhy | A2 v1)g; = 0,

where we have applied the conditions ViV, € B2 n Hé and

hi(O) = hi(l) = 0, for i =1,2. Thus we obtain the pair of equa-

tions

1 2
and

1 2

JO(D v,) (h, + /Egl) = 0.
.1 .1 2. .1 0 impl; 2
Thus g, = 75 hl’ Dg2 " Dhl’ D g, = fl € H implies g, € HY,
_ 1 _ .1 _ . .
and gZ(O) = ;g hl(O) =0, gz(l) = = hl(l) = 0 implies
g, € 2 n Hé. Similarly, we obtain g1 € H% n Hé and ngl =
1 T 2 2 T

"= f,, and so (f;,f,)" = B(q)*g = (Yo D°g,, - v/aD%;) = -B(a)g.

Therefore, B(q) 1is skew-adjoint. Since <B(g)*v,v> =
<-B(q)v,v> = 0, B(q) is maximal dissipative [25, p. 87], and so it

generates a C, semigroup of contractions on Y [25, p. 88]. o

We may now state and prove the result for ¥:

Lemma 2.24. o/(q) 1is the generator of a C semigroup

0
T(t;q) on Z = H0 x HO x HO.

Proof: Let 2z = (21’22’23) € Dom(/(q)). Since B(q) gen-

0 0

erates a semigroup on H” x H”, we have [25 , p. 87] R(B(q)- I) =

0 0

HY x H for any A > 0 and B(q) 1is a closed operator. But
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_‘)
since '
zy - Azl ;<
(H(q) - A)z = Z, .
@@ -2n(,2) z
3 :
i
R(B(q) - A1) = H' x H® implies that given £,,f, € H, there

z f ‘
. 2
exists z,,z; € Dom(B(q)) such that (B(q) - AI)\ZS) = (fi); ;

Bkt Sk mtntiSa o A

then, given f, € HO 1 - %T(z2 - fl) € HO and z solves

1 ?
(4(q) - \IDz = £, £ = (fl’fZ’f3)’ which implies R(7(q)-A1) = Z.

z

Also the fact that B(q) 1is a closed operator yields immediately

that /(q) 1s a closed operator, and these two conditions along

[ U Sy H P U W

with the dissipativeness of /(q) - wl are sufficient [25, pp. 87-

88] to ensure that o/(q) generates a C0 semigroup on Z. o

We again require a dense subset of smooth functions

[

PRNPUGEE S

2 < Dom(/(q). Note that for ¢j(x) = VZ sin(jnx), {¢j}i=1 forms :
0 €
a complete orthonormal set for H . Define Yy j = 01, f
0 0 ’ 0,
YZ,j = ¢j , and Y3,j = 0 . Then define
0 ¢j

N _ N N N
" = span{yl’j}j=1 u Span{YZ,j}j'-'-l u sPan{YS,j}j=1’ and

«©
2= v PN, then 9 =12. For X > 0, it is easily verified that -
N=1 i
(Al -4(q))2 =9, and so (Al - (Q))D = Z. .

N N

= 558 x 53Ny x s3(aY), and 1et PN be the orthogonal pro-

jection PN: 7 —> ZN. In this case, for 1z = (21’22’23) € Z, f

pNz = (pgzl,szz,szs) where Pg is the orthogonal projection of

i

For the approximate identification problem, define !

|

Z 1
|

HO onto SS(AN). The approximate identification problem then
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corresponds to solutions of

Ny = Ny Ny + PR, ), t >0

#

(2.12) ‘
2N (0)

zN
0
where &%N(q) = PNQZ(q)PN and zg = PNzO.

We defer obtaining a concrete realization of this problem to
the end of this section, after we have proved convergence of a
subsequence of the solutions EN of the approximate identifica-
tion problem converge to a solution q of the original identifi-

cation problem.

Lemma 2.25. Assuming (HQ), the projections PN converge

strongly to the identity I in Z,

Proof: Let (21’22’23) € 9, where 2 1is the dense subset

D c Dom(£(q)) = Z as defined above. Then, pN; = (szl,

N

N, . - ,N_N_N N .
POZZ’POZS) = (21’22’23)’ where P0 is the | lO projection of Z
\J
onto SS(AA). Then,
3
N 2 N 2
|P7z-2|% = ¥ |Paz.-z.]|
=1 071 7170
3
1 4 2
< .Z [KO’O(—I)lD zilo] , by Lemma 1.5.
i=1 N
Therefore PN —> I on 9, and the boundedness of the projection

operator implies, since £ = Z, that PN —> 1 strongly on Z. o

We now state and prove the convergence result for cubic spline

approximations.

Theorem 2.26. Let (HQ) hold. Then the semigroups T(t;q)

and TN(t;q) generated by o/(q) and.Q/N(q) satisfy
T(t;a) |l < Me®? and ([TN(t;q)H < Me“t. Moreover, for any

@7 e W b aan

i,
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sequence {qN} converging to q* in Q, we have

|TN(t;qN)z - T(t;q*)z| —> 0 wuniformly on (0,T]

for each z € Z.

Proof: The bound |{T(t;q)]{ < Me“? follows because (q)
generates a C, semigroup on Z [31, p. 10]. Since |

N, pNo> = wIPNzl < w|z|, by the dissipative-

<oN(q)z,2> = < A(q)P
ness of - wl, for w sufficiently large, we obtain
ITN(esa) Il < Me®t,

We refer again to the Trotter-Kato theorem (Proposition 1.5)
to establish convergence. Let %= Z, @N - ZN, and take nN

to be the identity. All that remains to be verified is condi-

tion (i1ii) of Trotter-Kato.

Taking 2 as above, we see that for each z = (zl,zz,z3) € 9,

| N (@M z- (at)z] = |PYar(dM)PNz- o(q%) 2|

| (=2(q™) - 2(q*)) P z|

A

(2.13)
| 2(q*) (PNz-2)| + | (PN-T) o (q*)z].

+

We bound each of the terms above. The second term may be written

explicitly as

[0 1 0 j
2(q*) (PNz-2) = | 0 o -0t (M - o) |
[ 0 /& p? 0 ;
r 2y - 2, {
= -/ED2(2§-23) ‘
L /an? (z-z,)




J
where qf = a and z? = th.

0%i? i=1,2,3. Thus,

N 2 N 2 2, N 2 2, N 2
l-w’(q*)(P Z‘Z)' = ‘ZZ-ZZIO + GID (23_23)'0 + GID (Zl'zl)IO’

which implies, by Lemma 1.15,
N 2 1,4,.4 2 1,2,,4 2
'M(q*)(P Z'Z)l _<_ [KO,O(N-) ID ZZI()] + Q[KO,Z(ﬁ) ID 2310]

1.2, .4 2
* “[Ko,z(ﬁ) D zzlo] ,

and so Ij/(q*)(PNz-z)l + 0 as N + o,
For the last term of (2.13), we have PN —> 1 strongly on
Z. Convergence of the first term follows explicitly from the

form of /(q):

f 0
(#(@M- @z = | -/ a) - vann?z
G ERELE
Convergence follows since Dzzg —> Dzz2 and Dzz§ —> Dzz3
in HO, and by hypothesis qN —> q*. o

This theorem, together with Proposition 1.4, is sufficient
to ensure that
1im|qN-q*] = 0 implies 1im]zN(t;qM)-z(t;q")] = 0.
N+ N-rx
We now turn to a concrete realization of the approximate prob-
lem using cubic splines. Let {C?} be the cubic splines defined
in (1.15) which span Sg(AN). The approximation subspace ZN is
Sg(Ah) x Sg(AN) x Sg(Ah). We follow the procedure outlined at the

end of Section 2 where we obtained a concrete realization using
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quintic splines.

We form projections PN: Z > ZN and seek approximate solu- P
. N N N, N N . N . |
tions of the form =z '(t) = Z wi(t)si where Ei € 2 is given
i=0
by
c},0,0)7 i=0,...,N,
N _ N T s
Ei = (O’Ci-(N+1)’0) i = N+1,...,2N+1, |
N T . _ >
(O’O’Ci-(2N+2)) i = 2N+2,...,3N+2. ‘

We are thus led to a system of 3N+3 differential equations for

the w? (compare with the 2N+2 system in the quintic formula-

tion!)
(2.14) Ny = NN+ N |
where
0 I 0 ;
N=1o 0 -OL(AI;)-IAT
N,-1,N
0 (A *A) 0
with
N _ N N N N N N _ N.-1.N
(A)5,5 = <€ Cy>qr (A 5 = <DEL,DC>g, FY = (@) 'R
. N
(@") = diag(a},a},a})
and ‘
[}
N 0 0 <1 <N, 2N+2 < i < 3N+2
(R7F); = N . 3
<f’Ci-(N+1)>2 N+1 < i < 2N+1. !

Finally, we present an approximate method using cubic splines
in the case where structural damping is included. While the con- H

vergence proof falls outside the framework above, we present

numerical results in Section 4 which demonstrate the effectiveness




of this method. We next consider (2.2) with Yy =0, a >0, § >0

and boundary conditions of type 1 (simply supported). The initial

conditions are the same as above. Equation (2.2) is rewritten as

§D%u +

. 0 0 0
(y’yt’yXX)T in Z =H xH x H, we

so that for =z = (y,v,u)T

obtain the abstract equation

Tz(t) = oz (t)
(2.15) T
z2(0) = (¢,¥,¢")" . 1
Here &/ is given by
0 1 0 .
¥=|0 0 -ab’ '
o Dp° 0

10 0
r=1,o 1 D2
0 0 1

Note that only if 6 = 0 (no structural damping) does this reduce ';

to the form (2.11) and fall within the framework of the theory out-

lined for (2.11) and (2.12). Nonetheless, the general ideas dis-

cussed above lead to efficient computational schemes for (2.11).

Taking ZN = Sg(AN) x SS(AN) x Sg(AN) and PN the orthogonal M

N, we define N = PN&/PN and

projection of Z onto 2

N _ pNppN

r PTP and use

iv >‘ : aani " B,




(2.16) A CO NI ARICD

as the approximating equation for (2.14). ?

Section 4. Numerical Results '

We provide a few examples of numerical experiments illustra-
ting the methods presented in this chapter. Many examples have
already been reported in [ 6] which compare the method based upon
quintic splines to the metlhod based upon cubic splines for the
Euler-Bernoulli equation with structural damping. Included were
examples with time-dependent boundary conditions which were trans-
formed to homogeneous boundary conditions. We refer the inter-
ested reader to those examples and do not repeat them here.

We provide some new examples not included in [ 6]. The
first example concerns a simply supported beam with both struc-
tural and viscous damping. The others illustrate the convergence
properties for the important case of the cantilever beam. All
of these examples use the quintic spline approximation.

The numerical experiments consisted of taking as data the
values of a solution of a model equation of the form (2.1) whose
parameters were known and then seeking a solution HN of the
approximate identification problem for different values of N.
The '"data" {yij}, i=1,...,r; j =1,...,8 were generated by
solving (2.1) approximately by a Crank-Nicolson scheme and using
yij = y(ti,xj) as the observations or input to the approximate
identification packages. For the experiments listed below, we

used £ = 3, r = 10 and generated the '"observations'" at

x. = j/4, 3 = 1,...,3 for times ti = i/10, i = 1,...,10.

J
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The optimization algorithm (see Chapter 4) requires an ini-
tial guess for the parameters; these are referred to as the

"start up'" values in the tables. The values to which the optimi-
N

tation algorithm converged for a fixed N are denoted by q,

and J(ax) denotes the cost functional evaluated at ak.

Example 2.1. We consider an example where we have included

both structural and viscous damping in the model. We consider

the rmodel equation

2 ol . . 3 . X
)tt q1>xxxx qZ}xxxxt qS}t el sint
y(0,x) = v (0,x) =0

)’(t,O) = )'Xx(t’o) = Y(t’l) - }'XX(t’l) =0

Table 2.1 summarizes the results for the parameter estimation

problem for this equation using the quintic spline approximation.

Table 2.1

N Q§ q§ q§ AE)

2 .999938 009875 .032420 .2001 x 10°°

3 .999940 .009974 .022713 .8231 x 107/

4 .999936 .010004 .019860 .3324 x 1077
TRUE VALUE 1.0 .01 .02 '
START UP .65 .005 .005

Example 2.2. Next we consider an example for a cantilevered

beam. With ¢(x) = sin ax - sinh ax + K(cosh ax - cos ax) where
K = (sin a + sinh a)/(cos a + cosh a) and a =~ 7.8547 (corres-

ponding to the third mode for an undamped cantilevered beam), we
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consider the equation

Yer T "9 xxxx T 92¥xxxxt

y(0,x) = ¢(x), vy, (0,x) =0

y(t,0) = v (t,0) =y  (t,1) =y (t,1) = 0.

The numerical results are summarized in Table 2.2.

Table 2.2
N a h 1@
2 .3821 .0067 .025 x 1071
3 L4960 .0098 .735 x 1074
4 L4996 .010020 116 x 10°°
6 L4997 .009995 768 x 107/
TRUE VALUE .5 .01
START UP .35 .005

Example 2.3. A second example for a cantilevered beam is

provided for the model equation

Yer T "9V xxxx T 2Yxxxxt T 910 exp[-20(1-x)lexp[-qqtl, t > O

y(0,x) =y (0,x) =0

)’(t,O) = yx(txo) yxx(tyl) =Yy (t,1) = 0.

XXX

Table 2.3 summarizes the results for the estimation problem corres-

ponding to this equation using the quintic spline approximation.
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Table 2.3
N qT qg qg QTO MCW)
2 .497863 .009923 2.02101 10.0458 110 x 10°°
3 .498527 .009995 2.01284 10.0255 693 x 1077
4 .499284 .009996 2.00602 10.0143 449 x 1078
8 .499775 .009982 2.00183 10.0075 .356 x 1077
TRUE VALUE .5 .01 2.0 10.
START UP .35 .005 1.5 8.0

When dq and a0 were treated as known values and optimization

was performed for a and qa, only, the following results were

obtained.
Table 2.4
N N N
N 4 a4 J(q)
2 .500394 009445 146 x 1070
3 500045 009763 141 x 10°°
4 .500006 .009817 340 x 10~/
TRUE VALUE .5 .01
START UP .35 .005

We note that in all of the examples considered for the Euler-
Bernoulli equation rapid convergence of EN to the true valued
occurred.

Fc the optimization algorithm (see Chapter 4), we specified

small convergence tolerances to obtain best possible results.

For a typical problem, convergence was obtained in 3-5 iterations
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of the Levenberg-Marquardt algorithm.

A variable step/variable order method (DGEAR) was used to
integrate the approximating system of ordinary differential equa-
tions. For example 2.2 with a requested local error tolerance

of 1. x 1076

, DGEAR took 211 steps (last stepsize was .018) and
used fifth order methods to integrate the system when stiff
methods were used. By comparison, when non-stiff methods were
chosen, it took 5766 step (last stepsize was .213 x 10'3) to
achieve the same local error and it primarily used order 2
methods, indicating a moderate degree of stiffness due to the
damping term.

As was the case with the second order equations considered

4

in [ 7], the PN&/PN approximations for linear constant coeffici-

ent problems were extremely accurate, even for small N. It is
expected that the power of these approximations will be more im-
portant for other problems to be considered in the future,

particularly the case of spatially varying coefficients.

C b e e
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CHAPTER 3. APPLICATION TO THE TIMOSHENKO EQUATION

Section 1. The Timoshenko Equation

The second example of the application of these techniques
that we wish to consider is the identification problem associated
with the Timoshenko equations for transverse vibrations of beams.
The Timoshenko theory extends the Euler-Bernoulli theory by tak-
ing into account the effects of rotary intertia and shear dis-
tortion. These effects play a significant role when the depth
of the beam is large when compared to its span and when high fre-
quency oscillations must be considered.

While the Timoshenko formulation may be written as a single
fourth order partial differential equation, it is easier to
handle boundary conditions when it is written as a system of two
partial differential equations in the transverse displacement
y(t,x) and angle of rotation ¥(t,x) of the beam cross-section

from its original vertical position [14, p. 300]:

Y a(y_,, - v.) + f(t,x;q)
(3.1) tt XX X t >0, x € [0,1)
wtt wax + b(yX - ll’),

where a = k'AG/m, b = Aa/”, ¢ = EI/m, with A = cross sectional
area of beam, E = Young's modulus, G = shear modulus, I = moment
of inertia, and k' = shear coefficient (cf. [15)), and where
f(t,x;q) 1is the '"load" or applied force.

The initial conditions are




y(0,x)
Y¢(0,x) = y,(x)

v(0,x) = ¥q(x)
Ve (0,x) = y;(x),

¥ (x)

and some of the common boundary conditions are

) y(t,0) = y(t,1) = ¥(t,0) = ¥(t,1) = 0
1) y(t,0) = y(t,1) = 3¥(¢,0) = 3¥(t,1) = 0
1i1)  y(t,0) = v(t,0) = 2e,1) = 0, L(r,1) = w(e,1).

These correspond to the boundary conditions for a beam fixed at
both ends (i), a simple supported beam (ii), and a cantilevered
beam (iii), comparable to the boundary conditions of type k
for the Euler-Bernoulli equation (cf. [13, p. 97]1).

For the ease of exposition, we shall limit our discussion
to boundary conditions (i), although the theory is generally

applicable to all three.

Section 2. An Approximation Using Cubic Splines

Following again the approach outlined in Chapter 1, we write

(3.1) as an abstract equation

£(t) = (q)z(t) + F(q,t)

2(0) = z4(a)

(3.2)

in a Hilbert space Z, where Q; = a, q, = b, Qz = C, and
q4,...,qp are parameters in the load term F and initial func-

tion ZO.
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Again, there are many choices of (3.2) and the space Z .
which lead to well-posed problems. The forms that we choose for '

(3.2) lead to specific state approximations. We shall discuss g

two such possibilities and discuss the approximate identification N
problem of the first in detail. e
The first such choice of the abstract equation will be

(3.2) with z(t) = (27(£),2,(1),25(t),2,(t))] = (¥(t,*),¥,(t,"),

(), (t,-)), in Z = V(a) x H® x V(c) x H®, and with ¥
0 1 0 0 g

ap? 0 -aD 0 ;

(3.3) ) = 0 0 0 1 g
bD 0o cd?b 0 |

i

on Dom(¥) = H2 n Hé x Hé x HZ n Hé x H%, where V(o) = Hé(a) fi
c

. . . - - |
equipped with the inner product <u,v>v(a) = <u,v>1,a = <aDu,Dv>0. 3
We denote the corresponding norm on V(a) as l-ll o and take .

F(q,t) = (0,£(t,-;q),0,0)".

i e

Theorem 3.1. The operator /(q) defined by (3.3) with

9 = a, q, = b, 9z = ¢ is the generator of Co semigroup

t

T(t;q) on 2z satisfying |[T(t;q)] < e“" for some w > O.

Proof: Define the operator -96 on Z by ;*

0 1 0 0 |
2 B 0
_ | aD 0 0 0| _ 1

Jy()(cl) = = |

0 0 0 1 0 B,
il 2 ‘
0 0 cD 0 |
h B, = ° ! on Dom(B,) = H2 n H1 X Hl d i
where 1 aDz 0 1 0 0 an ‘

A Dom(B,) = H: n HE x Y. B d B

2 cp? o 2 0o~ Mor Fp and By are

)

L : . o

P RIS,

%
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the wave operators considered in [7, p. 29), where they were
shown to be generators of Co semigroups of contractions in
V(ay) x H

the generator of a C0 semigroup of contractions To(t;q) in

for i =1 and i = 3 respectively. Thus J%B is

Z,-Q% is maximal dissipative, and HTO(t;q)H < 1.
Now we apply perturbations results to obtain the conclusion
of the theorem. We first show that & is a bounded perturbation

of the operator Q%. Note that £/=-@% + where

0 0 0
R -aD 0
0 0 0 0
bD 0 -b 0 )
|z| = |-aD23l0 + |sz1 - b23|0
< IaD23|0 + |szll0 + Ibzol0
= C b C s
= 5|23|1,c + Elzlll,a + b|23|0, by definition of Z,
< §|23|1 ¢t §|Zl|1 a * %iDzslo, by the Rayleigh-Rit:z
: i inequality,
= C b b
" E|23|1,c * Elzlll,a * FElzsll,c
_ _b
= Kllzlll,a + K2|23|1,C, where K; = = and
- C b
Ky =3 * 7w !

me i

< K3|z| with K, = max(K;,K,).

Thus o/ is a bounded perturbation of Jxa, and we can apply the
perturbation results of [31, p. 80] to infer that o/ generates

a C0 semigroup on Z, satisfying

~ K.t
IT(t;a) < ell Xt =e. o
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Corollary 3.2. The operator (- wI) 1is dissipative for E

all w sufficiently large. i/
Proof: Let 2z € Dom(%/). Then v
<Hz,2> = <(_M0 +,(y~)z’z> ’:
~ - A
= <%z,z> + <Az, 2> !
< <¥7,2>, since ,Q% is dissipative, f:
[
< 12| Izl :
< K3I2|2 by the boundedness of .
Thus <(2- wl)z,z> < 0 for all w > K,,. 3

3
The proof of the above theorem is interesting in that it

states that the Timoshenko equations can be viewed as a pertur- i
bation of "wo simple wave equations. Because of this fact, we
were able to apply the results of { 7] where the wave equation .

involving an operator of the form B1 was treated.

Corollary 3.3. Let &= Dom() n (H™ x H™ x H" x H™),
m > 3. Then (oF- Aongg

Z for some AO sufficiently large.

Proof: Since . generates a C0 semigroup on Z,

R(o/- AgI) = 7 for A, sufficiently large. So for such 1,

in the resolvent set p(Q), - AOI is invertible.
Consider Y e z. Y = (H" x i % x ¥™ x §" %) n z. clearly
0 3054

|
r
i
|
1
1
- A1 1is invertible on Y, so take f = (fl,fz,f ) €Y. !
We show there exists a z € & such that |

{

(3.4) (- AOI)z = f,

We know by the invertibility of g- AOI that there exists a
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2 € Dom() = Hy 0 HE x H x Hy N WY x Hy such that (3.4) holds.

We need only show z € 4. But,

r

| -

0%1 * 22
2
-A,z, + aD"z. - aDz
| (- AOI)Z - 0~2 1 3
; -A023 + 24
| 2
L A024 + sz1 + ¢D 23 - z3 J

So, (- AOI)z = f if and only if

(1) -Aozl *z, = f1
(i) -Agz, + aDzzl - abz, = £,
(iii) -Aozs iz, = f3
(iv) -Aoz4 + sz1 + chz3 - czg = f4.

First consider m = 3. Then, £ € Y = (H> x u! x 3 x §l) n z
implies f, € Hl, and z € Dom(%/) implies =z, € Hé,

2 .1 1 . 1
24 € H" n HO (hence Dz3 € H). So g = aDz3 + XOZZ + fz € H
and (ii) implies Dzz1 = g/a € ! and 2, € H3. Then (i) im-

plies z, € HY. Similarly, f € Y implies £, € Hl and
2

4

L 2 .1 1 : _
z € Dom(/) implies z; €HT N HO’ 4 € Hy and so g = (Aoz4
1 2

and so D 25 = g/c € Hl, which implies

Z

sz1 + cz + f4) € H

3

25 € H°. And then (iii) implies

3
z4 € HY,

Next consider m = 4. We have 1z € (H3 x H3 x H3 x H3) n
Dom(¢/) from above, and we assume f € (H4 x H2 x H4 x Hz) n z.
Repeating the arguments in the last paragraph yields Dzz1 € H?
which implies z, € H4 and z, € H4 (from (i)). Likewise,

Dzz3 € H2 implies 245 € H4 and z, € H4.
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A simple induction argument yields the result for arbitrary
m. [Note: we actually only use m = 4], So, (/- A D2=Y,
, and TE?T_TETiQ =Y =12 since H™ is dense in Hm'j,

j=1,...,m. o

We may now discuss the state approximations which we use to

solv- the approximate identification problem. We take

N = 53l s>(aNy x s3(aNy x s3(8N), where we recall that

SS(AN) is the set of cubic splines s(x) with knots on AN

satisfying s(0) s{1) = 0. Define PT(G) the projection

N 3,,N . N
Pr(a): V(a) —> sg(87) in the ”II,a norm, and P,
the projection Pg: H0 ——e»sg(AN) in the HO norm. Then _t

to be

follows immediately from Lemmas 1.15 and 1.16 that with PN

defined as the projection PN: 7 —> ZN given by PNz =

N N N N .
(Plzl’POZZ’PIZS’POZ4)’ that (see also [ 7, p. 33]) the following }
holds.

Lemma 3.4. PN —> I strongly on Z.
With ZN and PN defined as above, we solve the approximate

identification problem associated with

Nty = N@Ne) + FNa,t), t> o0 |
(3.4) Ll
N0y = PNz |
in ZN, where again we take |
N = pNopN, |

FN = pNE,

The operator QKN(q) defined on the finite dimensional sub-

spaces ZN is a bounded operator for each N and hence generates
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a CO-semigroup TN(t;q) = éyN(q)t on Z. By Theorem 3.1, «(q)
is the generator of a C, semigroup satisfying IT(t;a) |l < et
so that g/(q) - wl 1is the generator of a semigroup of contrac-
tions and is maximal dissipative [25, p. 90). Thus by the re-
marks in Chapter 1, Section 2, g/N(q) - wl generates a CO semi-
group of contractions, or.QZN(q) generates a CO semigroup
™(t;q) satisfying [|TN(t;q) ]| < e“t.

We can now state and prove the convergence result that the
solutions of the approximate identification problem using state

approximations (3.4) converge to the solution of the identifica-

tion problem corresponding to (3.2 - 3.3).

Theorem 3.5. Assume (HQ) holds. Then /(q) and ;{N(q)
t

are generators of (, semigroups satisfying [|[T(t;q)] < et and

HTN(t;q)H < et for some w > 0. Moreover, for any sequence

{qN} converging to q* in Q, we have
N, N e .
|T (t;q)z - T(t;q*)z] —> 0 uniformly on [0,T]

for every z € Z.

Proof: We have already proved the first assertion. We in-

voke the Trotter-Kato “heorem once more to prove convergence.
N

Let @= 2(q*), B = z2N(q"Y), and let ™V: Z(q*) —> 2(qV) be

the canonical isomorphism between Z(q*) and Z(qN). Then ‘
qN —> q* implies IwNzl —> 2z , so that the first hypothesis

of Trotter-Kato is satisfied. Thus, it remains to verify hypothe-

-

sis (iii). We have already defined the set & such that

(H(q*) - A1)2 is dense in 4.

T L e




To prove that the last hypothesis holds, let =z = (zl,zz,

\

23,z4) € 2. Again, we shall suppress the notation wh, and ob-

tain

1PYa™) @MV - ar(a%)z]

NNz - wiq*)z]

| A

| (@™ - ar@)Pi @Mz .
(3.5) ; '
M ETCOYGACERN 3

+ 1PN -1) w(a®)z].

We estimate each of these terms separately. The second term in

(3.5) can be written explicitly as

sadiad el ik ATl

0 1 0 0
2
q*D 0 -q*D 0 .
N, N y
o/(a*) (PN (a)z-2) = | g 0 ; R CAICROERS
|
% 2_ % ]
q5D 0 qu Q3 0 .
N e,
anl N Cane N
i qiD"(z7-24) - ajD(z5-24)
N
2y T2y

arp N a2 N o LN
| 42D(27-29)  d3DT(z5-25) - aj(z3-23) |

where we have denoted PN(qN)z = (zT,zg,zg,zg). Thus, f

N, N 2 N 2 2. N N 2
* - = - * - - -
laq*) (P (q )z-2) | 12, zzll,qf *+ |ajD%(z;-27) -a¥D(z5-23) |

N 2 N 2. N N 2 |
* |Z4'Z4|1,q§ + lagD(zy-21)+a§D" (23-25)-a3(z3-23) | f

N 2z 2, N N 2
< |ZZ'ZZ|1,qf + {q;lD (zl-zl)lO + quD(z3-23)|0}

N 2 N 2, N
+ |z4-z4ll,q§ + {|q§||D(zl-zl)|0 + qg|D (23-23)|0

N 2
+ lqsllz3'z3|0}

i




2 1
< 0t $310%2,1 0% + {at KO,Z(N)ZID"zIO

1.3,.4 2
® =
* A} kg 1 (@7ID7z50

2

+

D

© aE ey o 0tz 0%« Uagle (310t

1.2;.4

(T35 3

lqgl(§)4 Ko 0|D423|0}2, by Lemmas 1.15 and 1.16.

Now since q € Q and Q 1is compact by hypothesis, and since

2152552352, all are in H4 by the choice of 2, we have

| /(q*) (PN (a)z-2) |2 = 0(1/N%) for z € 9,

guaranteeing convergence of the second term in (3.5).
For the last term in (3.5), we have the convergence of PN
to I strongly on Z. Convergence of the first term follows

explicitly from the form of the operator,

0

(a}-q%) (0 2 '-Dz¥)
N £17pN (N 1
(#(q7)-27(q*))P"(q )z = . 0
T
(a5-q% £) (n° 23) (qz q5 )(Dz 3) ,
since qN —> q%*, Dzz§ —_> Dzzl, Dz§ —> DZS’ Dzz§ — D‘zs,

N

N
Dz1 —_ 2y and 23 —> Zg-

Thus the hypotheses of the Trotter-Kato hold and we may con-

clude by it that
ITN(t;qN)z - T(t;q*)z| —> 0 uniformly on [0,T}

for each z € Z. o
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Now, since PN —> ] strongly on Z (Lemma 3.4), Theorem
3.5 along with Proposition 1.4 guarantee the convergence of a sub-

=Nl ¥
sequence of solutions qh of the approximate identification prob- ‘

lem to a solution q of the original identification problem (IDA).

We now briefly describe the concrete form this approximation

N 3, N 3,.N 3..N 3N ' N _ N .
takes on 77 = Sp(87) x S;(87) x SG(AT) x S;(A7). With Cj = By 4 L

as the basis elements for SS(AN) 1efined in (1.15), we obtain i

as a basis for I the set {B?}gzgs where

,

N . .
(Ci,0,0,0), 1 = O,-..,N |

N

N - (0,C5 _(ne1)?
N

(O’O’Ci'(ZN*Z)’O)’

N . |
(0,0,0,C3 _(3ns3y) IN+3,...,4N+3. ;

0,0), 1

N+1,...,2N+1 E

[
]

ZN+2,...,3N+2

e
fl

\

The usual Ritz-Galerkin formulation leads to a 4N+4-dimensional

matrix system for the coefficients w?(t) in the expansion for

ZN(t) relative to the basis for ZN. In particular, one finds

(see the end of Section 2.2) that
4N+3 '

N N
iZO Wi (t) B

Ny =

J
(wg(t),...,w2N+3(t)) satisfies

where wN(t)

PNy = NPy + RV it

. N _ N - N - .
becomes
(3.6) A OREEANORERL

with




[ ——

. i g

0
N,-1,N Ny-1,N
cN - a(A) Ay 0 "alAz) T3 0
0 0 0 I
Ny-1,N Ny-1,N
| b(ap AL 0 c(A;) TA{-bI 0
_ N . .~-N N N = _oneN N N
with (A7) 5 = <C3,C>0, (A)); 5 = <DC;,DCy>g, (Ag);
N N
<Ci ’ch>0’
N .
(FN) ) fi’ i = N+1,...,2N+1
1 0 , otherwise

J
where fN = (fg,...,fg) corresponds to the "load" f in (3.1)

and is given by £ = (A]) 1(RVe) with R’V = <l >,
Also, since zl(t) = y(t,+), the approximation to the dis-

placement y 1is given by

(3.7) yNe, o) = 2N whrych,

[
~
t
~—
[}

It ~122

As we did with the Euler-Bernoulli equation, we may rewrite
(3.1), uusing a simple change of variables, as an abstract equa-
tion in a space which permits the use of lower order splines for
ZN. Again, this leads to a different approximation.

Consider the following change of variables:

v; = vaDy - v/ay
V2 T V¢

Vg = Yc Dy

v4 = wt.

Then, (3.1) becomes

. - P T e R e e "
Sresnenae C .o
- ey Nl o .o, ,» e At il i o




= Cle + sz

where v = (vl,vz,vs,v4). This is the standard form for a hyper-
bolic first-order system of partial differential equations [37,
p. 108], since C1 is symmetric.

This may be put into the previous formulation

i(t)
z(0)

(q)z + F(q,t), t >0

Z0
with z(t) now taken to be z(t) = (zl(t),...,z4(t)) = (vl(t),

.,v4(t)) in HO x HO x HO x HO. In the case of boundary condi-

v(t,0) =

v(t,1) = 0), we obtain vz(O) = vz(l) = 0 and v4(0) = v4(1) = 0.
2

tions corresponding to a fixed beam (y(t,0) = y(t,1)
This formulation in a product of L spaces was used to generate
the "data" for numerical experiments using the method of lines
package MOL1D [22].

Since this formulation does not yield y(t,*) directly, an
auxiliary equation 25 =z, is included and integrated along

with the system above, yielding vy(t,*) = zs(t).
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Section 3. Numerical Results

We summarize in this section results of some of our numeri- ]
cal experiments using the approximate scheme presented in the %
previous section, based upon cubic splines. A description of the .
package which implements this method is the subject of Chapter 4.

As in the Euler-Bernoulli case, we took as data the values x
of the solution of a model of the form (3.1) whose parameters

were known and sought a solution HN of the approximate identifi- ‘3

cation problem for different values of N. The "data" {yij}’
i=1,...,7; j =1,...,2 were generated in this case using the

L2 formulation of the Timoshenko equations (3.7) and using a

general purpose computer code (MOL1D) to solve this system of

first-order hyperbolic equations to obtain displacements y(t,x).

st

Then {yij}, i=1,...,r; j=1,...,% with Yij < y(ti,xj) were
used as the observations or input to the approximate identifica-

tion package. For the experiments listed below, we used & = 9,

T 10 and generated the '"observations'" at xj = j/10,

j 1,...,9 for times ty = i/i10, i = 1,...,10.

The optimization algorithm requires an initial guess for the
parameters qN’O, which is referred to as the '"start up'" values

in the tables below. The values of the parameters to which the

optimization algorithm converged for a given N are denoted by

EN, and J(EN) is the cost functional for those values of the

parameters. l

Example 3.1. We consider the motion of a beam initially at

rest with fixed ends and described by the system

é
1




Vit

l‘btt

y(t

y (0

= quxx

- qwax

,0)

- qlwx + 10e

+ qz(yx - ‘P)

2t sin 2t

y(t,1) = 9(t,0) = ¢(t,1) =0

»X) = ¥y, (0,x) = y(0,x) = v, (0,x) = 0.

The numerical results are given in Table 3.1,

|z

10

12

16
TRUE VALUE
START UP

N
4

.9882

.9969
1.0009
1.00036
1.¢0033
1.0

.9

Table 3.1

)
726.
781.
794.
794.
797.
800.

1000.

19
00
29
90
85

=N =N

3.6864 .526 x 10
3.9218 735 x 107°
3.9684 .108 x 10°°

3.9732  .165 x 10°°
3.9883  .256 x 107/
4.0
3.9

When only one parameter was treated as unknown and the other two

were held fixed at their '"true values'" in Table 3.1, the follow-

ing results were obtained.




Table 3.2 iw

N q 3@ 1
3 .93922 122 x 107} f1
4 .98452 .105 x 1072
5 .99533 211 x 1073
6 ,99824 .581 x 1074
8 .99975 770 x 107°
% TRUE VALUE 1.0
: START UP .9
Table 3.3
N H 1@
4 814.85 .109 x 1072
5 804.07 .215 x 1073
6 801.47 .587 x 107%
8 800.11 772 x 107°
TRUE VALUE  800.
START UP 1200.
Table 3.4
N a 1@
3 3.77091 130 x 1071
4 3.91936 .108 x 1072
5 3.97700 214 x 1073
3.99157 .586 x 107%
8 3.99917 772 x 1077
TRUE VALUE 4.
START UP 3.

T S R s RIS P RN LR
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Example 3.2. We consider a clampcd beam deformed to the

shape ¢(x) = cos Ax + cosh Ax - K(sin Ax + sinh Ax) with

A= 4,730, K = (sin X + sinh A)/(cos A + cosh 1), then allowed to

vibrate freely, which can be described by the system

i1
Yee T 9 Yxx qlwx n!
r
Ver = Qz¥x * 00y - ¥) 4
y(0,x) = ¢(x), y,(0,x) =0, ¥(0,x) = ¢'(x), ¥, (0,x) = 0,
y(t,0) = y(t,1) = ¥(t,0) = ¥(t,1) = 0. ;
The numerical results are given in Table 3.5, x|
i
Table 3.5 2
E— |
N ay @ a J (@ {
4 1.1812  1325.3 3.6437 613 x 1072 K
|
8 9480  1125.1 3.993 167 x 1072 ,
10 .9938 1222.3 4.1074 477 x 1073
12 .9510 1134.7 4.1053 .468 x 1073
16 .9908 1152.3 3.8875 .242 x 1073
20 .9959  1181.7 3.9593 .145 x 1073
1
24 1.0009  1193.7 3.9771 122 x 1073 i
i ]
TRUE VALUES 1.0 1200. 4. .
START UP .9 800. 3.
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CHAPTER 4. IMPLEMENTATION OF THE APPROXIMATE
IDENTIFICATION PROBLEM

Section 1. General Description of the Codes

The final chapter describes how the previously discussed

methods were implemented into computer codes. While we have a

different computer program for each of the methods discussed in
Chapters 2 and 3, the basic structure and much of the code is

the same for each program. In fact, the computer codes used for

the identification problems discussed here were developed from
codes written for the identification problem associated with a
wave equation model examined in [ 7].

The computer codes were written with flexibility as the prim-
ary guiding principle. When more than one approach could be used,
the one that would most easily be adapted to handle extensions
or modifications of the current problem was chosen.

We describe below the algorithms in a general setting.

Most of what follows is also applicable to codes used for identifi-

cation problems associated with the one-dimensional hyperbolic

and parabolic equations in [7] and with convection-diffusion

equations discussed in [ 5]. All of the codes were written in

FORTRAN and implemented on the IBM 370 at Brown University.
While this chapter is intended as a description of algori-
thms used and not as documentation for the computer codes, refer-

ence is made to the specific subroutines which implement the

various algorithms.




We begin by outlining the general program for estimating the y

solution to the identification problem (IDA). We have seen two
formulations of the Euler-Bernoulli equation and one of the
Timoshenko equations for transverse vibrations of a beam. All

gave rise to an abstract equation of the form

i

2(t)
z(0)

2(q)z(t) + F(a,t), t >0 ]
(4.1) ,

]

zg(a),

where z(t) = (zl(t),...,zs(t)) € Z, zO(q) = ¥(x3;9). In every
case, we have y(t,-;q) = zl(t;q) where vy(t,x;q) 1is the trans-
verse displacement of the beam at x € [0,1] and at time t
associated with the parameters q € Q c RP‘

In order to discuss the common computational features of

each of the approximate identification problems discussed in

Chapters 2 and 3, we note that in each case we took ZN =

N N N . N, N

Iy X -0 X 23 where Zi possessed a basis {Bi}i=o of appro-
priately modified B-splines; the basis for 2N then was

{B?}g=0, ¢ = s(N+1) - 1, where B?i-l)(N+1)+j(x) = B?(x)ei,

i=1i,...,8; jJ = 0,...,N, with e; the usual basis for R
In each case, the choice of ;/N = PN&VPN led to an approxi-
mation of y(t,x) of the form
N

‘ (4.2) Yre0 = 1wl (6B ()
i=0

where wN(t) = (wT(t),...,wg(t)) satisfies J

prmy.y




(4.3) Q“w”(t) = Mty + RVF(q,t), t >0,

w0y = PNy,

with
(QN)ij = <s B? ) (KN).. = i ;/e >
(R¥F), = <8,,F>, P = (@O RV,

This formulation includes the following three problems from
the previous chapters:
1. The Euler-Bernoulli equation with boundary conditions of

type k, with approximations based upon quintic splines. In this

case, s = 2, and B? B? 5 satisfying boundary conditions of
s

type k. The inner products are those in Z = Hi(a) x HO, namely

<u,v> = 1°V1 * <u,,v

>2, 270
2. The Euler-Bernoulli equation with boundary conditions of

type 1 (simply supported), with approximations based upon cubic
splines. In this case, s = 3, and B? E B§ with B?(O) =

i,3
B?(l) = 0. The inner products are those in Z = HO x HO x HO

namely <u,v> = <u1,vl>0 + <u + <u

2'V2%0 3:V3%0"
3. The Timoshenko equations with fixed end conditions,

with approximations based upon cubic splines. In this case, s = 4

N

and B? = Bi 3 with B?(O) = B?(l) = 0. The inner products are

0

those in Hg(a] X H™ x Hé(c) x HO, namely <u,v> = <u1,v1> +

l,a

UpaVa%p * SU3eV3Py o T SUgsVyge

Then, given data {?ij}, i=1,...,r; j =1,...,% correspond-

ing to displacements of a beam cross section located at X; € (0,1
at time t;, the approximate identification problem is to find
¥ which minimizes

]
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(4.4) oN(q) = J(a,yN(t,-5a),R)
T 2 .
N ~ 2
= t.,X.; - . - ’
izl jley (tiox55a) - 45l

subject to t —> yN(t,') satisfying (4.2) and (4.3), where
Ay = (Fltxg) s, ¥ty,x)).

So any implementation of the approximate identification prob-
lem requires an iterative procedure to minimize QN(q) and a
method for approximating solutions to the system of ordinary
differential equations (4.3).

We discuss the common features of the computer program for
each of the above problems.

As mentioned above there are two major tasks involved in the

approximate identification program. The first is an unconstrained

minimization problem for the sum of squares ¢N(q)
n

~ TA i - N L. - A =
izl €;(a) &;(a), where e;5(a) = y (t;,x53a) - ¥;5, &

(eil,...,eim). and yN(ti,-;q) is the solution of (4.2) -

>

(4.3). This task is solved efficiently by the Levenberg-
Marquardt algorithm, and IMSL's version ZXSSQ has been used for
this purpose. The second major task, required each time we evalu-
ate ¢N(q), is to solve numerically the system of ordinary dif-
ferential equations (4.3). Since a wide variety of problems have
been solved, some of which were stiff (for example, the Euler-
Bernoulli model with structural damping coefficient & > 0), a
general -purpose variable-step, variable-order method was required
which would handle both stiff and non-stiff equations efficiently.
Gear's algorithm, with a switch between Adams-type and backwards-

difference methods was suited to this task; IMSL's version DGEAR
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was used. Both of these algorithms will be described below.
In addition, integration of the system (4.3) requires an
efficient method for performing each of the following subtasks:
i.) Compute the basis elements. This requires an effici-
ent method for evaluating the modified B-splines
B?(x) and their derivatives, where {B§(x)}§=0 are
splines (linear combinations of the standard B-splines)
which satisfy prescribed boundary conditions.
ii.) Compute the matrices QN and KN in (4.3). This in-
volves evaluation of inner products of the form
a;j = <DuB§,DvB?>O, with wu,v € {0,1,2}, and storing
the resulting matrix (aij) efficiently.

iii.) Computing projections. We need to project the initial

N § N
function P“Y = J b;8;, with b = (b

,-+..3b_ ) given
i=0 1 °

by b= Q) R¥(¥), and similarly we require P E(t)
where F is the non-homogeneous term in (4.1).
N :
iv.) Compute the '"spline series” ) w?B?(x).
i=0

v.) Evaluate the right-hand side of the system (4.3), nawmely

fow,t) = (@Y 1My + RVP(q, ).

Subtasks i.)-iv.) comprise the "spline package', discussed in Sec-
tion 5. The subtask v.) is discussed in Section 6, where alterna-
tive ways of performing the computations are discussed. First,

we give an overview of the program structure.

SN RS (5, Attt st sacs L -
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Section 2. Program Structure

We give an overview of the program structure. We have noted
previously that macroscropically the program may be described as

an optimization algorithm for minimizing ¢h(q), combined with ‘

an approximate method for integrating the system of ordinary dif-
ferential equations (4.3) in order to evaluate ¢N(q). Since both ]
of these tasks are solved by iterative methods and can require
considerable computation, it is useful when analvzing efficiency
to divide the program into a structure on three different levels:
Level 1. Preprocessing, or computations which can be done
prior to iteration. These include reading data
{9ij}’ computing and storing inner products in QN
and KN, and computing projections which do not
depend on the parameter vector q.
Level 2. Computations inside the iterative loop for minimiz-
ing ¢N(q). These include projections of the ini-

tial values (which may depend on q), solving the

system (4.3), and computing
N on
y (x,t) = Z “'i(t)Bi(X)
i=0
Level 3. Computations which are performed at each step of
the algorithm for integrating the system (4.3);
these computations are those required to evaluate

the right-hand side of (4.3).

The levels are connected in the following manner:




where IXSSQ is the routine to minimize ¢‘(q), and DGEAR numeri-
cally integrates system (4.3). For a particular N (dimension
of approximating subspaces), computations at level 1 need only be
performed once. Computations ut level 2 must be done at each
iterative step of the optimization routine ZXSSQ. Since each
iterative step of the optimization algorithm requires that the
system (4.3) be solved (at least once per step), and the numeri-
cal algorithm for integrating (4.3) requires many evaluations of

the right-hand side of (4.3), computations at level 3 are done

most frequently.

In terms of routines in the packages, the routines at level 1
are those called from the main routine. These include READ, which
reads input data and program parameters, and SETVL which sets
the knots and computes inner products and projections which do
not depend on q by calls to the spline package. i

The computations at level 2 include those performed in sub- 1

routine FUNC and the routines called from FUNC, such as INIT,
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which computes the projections of the initial data, and CNVRT
which computes ZwiB?(x) by calls to the spline package.
The computations at level 3 are those done exclusively in

routine DEV.

Section 3. Optimization by the Levenberg-Marquardt Method

We briefly describe the Levenberg-Marquardt algorithm. We

wish to find q* which minimizes

| =

¢(q) = 5 eT(q)e(q)

where e(q) 1is the vector whose components

~

e(1'1)9/+J(q) = }'(ti,Xj;Q) D A

i i=1,...,r; 3 =1,...,2%

are the pointwise errors (residuals) stored as a vector. We
construct a sequence of iterates q(J) such that q(J) —> q*

by using an iteration scheme of the form

(4.8) q(j*l) = q(j) + g3
where d(3) is a solution of
(4.9) A0)a() o Lge(q(idy,

where V denotes the gradient (53_""’__—) and A(J) is a
1
matrix characteristic of the method.
If A(J) = I, the identity matrix, then the method is steep-
est descent. If A(J) = V2®(q(3)), where V2¢ denotes the
. . . . 9°d .
Hessian matrix with entries 537535’ then the method is Newton's

method obtained by truncating the Taylor series expansion after
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the quadratic term. While the former method is a strict descent
method (¢(q(j+1)) < @(q(j)) and is theoretically globally con-
vergent, in practice convergence is both slow and unreliable

(17, p. 18]. On the other hand, Newton's method converges quad-
ratically in a neighborhood of q* [17, p. 35], but it requires
evaluation of the Hessian matrix, which makes it impractical for j
the problem at hand.

However, since
(4.10) v¢(q) = G(q) G(q)
de, .
where G(q) is the Jacobian of e (Gij = ga%), and f
(4.11) v20(q) = Ze;(a)V%, (a) *+ G(a) G(a),

we may approximate V2¢(a) by G(q)TG(q) for small residuals.
Thus (4.8) and (4.9) with

(4.12) A(J) = G(q(J))TG(q(J))

is the Gauss-Newton method. Convergence of this method is at B
least 1linear in a neighborhood of q*, and quadratic if ¢(q*)=0
(17, p. 94). However, this method experiences problems if G is f
ill-conditioned (there is no guarantee that G even be full rank

away from q*). The Levenberg-Marquardt approach is to replace

(4.12) with

(4.13) A0) = yO)p 4 6(q(3))Tg(q 13y,

where D 1is a positive diagonal matrix, with u(j) > 0 chosen

sufficiently large to ensure A(J) is positive definite and to
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ensure strict descent (¢(q(j+1)) < ¢(q(J))). In Marquardt and
Levenberg's original scheme, D = I was used. The IMSL imple-

. oy _ T
mentation ZXSSQ uses Dii = (G G)ii.

Note that as u(J) becomes large, the direction of search

d(J) approaches that of steepest descent, while u(J) =0 is
the Gauss-Newton method. The method is 1locally convergent, and
the rate of convergence is at least linear ([17, p. 96 1.
de. (q)
Since Gij = ——%a;— is not generally available analytically,
it is computed numerically. An option in ZXSSQ permits one to

have the Jacobian computed numerically by

(4.14) aij _ ej(ql,...,qi+6i,...,qp;.— ej(ql,...,qi,...,qp)
1

where §. = max(fqif,.l)*/ﬁ, where u is the relative precision
of floating point computations. While this avoids the problem

of having to provide an analytic Jacobian, it costs p addi-
tional evaluations of ¢(q) to numerically compute G. Thus when
G is fully evaluated, p+l evaluations of &(q) are required

per iteration.

If the Jacobian is not changing too rapidly, it is possible
to approximate G wusing the information in the direction of the
most recent step to update the Jacobian., 2ZXSSQ uses, when ap-
propriate, a rank-one update of the form

@15 801 2 g0 L reqUi*D)y | o(ql)y . ¢W)aaT
a a

(3)

where a = q(3+1) - q . When this approximation to the Jacobian

is used, no additional evaluatons of ¢(q) are required, and so

. . - v . -
— . . - ORI~ . PR N T P U,
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¢(q) will be evaluated only once in such an iteration step.
The iteration (4.8)-(4.9)-(4.13) is repeated until one of

the following conditions is met:

4.16) 1. [ve(@U)y] <6
2. |¢(q(j+1))-¢(q(j))/¢(q(j))| <€
3. Q(q(j+1)) and @(q(j)) agree to NSIG significant
digits.

Section 4. Integrating the System of Ordinary Differential
Equations

We next describe very briefly the method used for integrating
the system (4.3), namely IMSL's routine DGEAR [23]. For a
description see [21]. We only include those details which afffect
the choice of parameters for the ID package and provide some ap-
preciation for the amount of computation required.

To abbreviate the notation, write the system (4.3) in the

form:
(4.17) w = f(w,t), w(0) = Wo e

The methods in DGEAR are based upon difference approximations of

the form

Wk T
j

2
+ h B.Wy o, B
20 3K

[ e -

(4.18) . W

1 3
1 J k’J

where aj, Bj are constants associated with a particular method
and where Wy is an approximation to w(tk), Wk = f(wk,tk) is

an approximation to W(tk) and h 1is a constant stepsize

(tk+1 =t +h). The Adams methods of order m correspond to

the values K1 =1, K2 = m-1, and the backwards difference for-

mulas (BDF) correspond to the values K1 =m, K

is solved with all past values exact, then Wy - w(tk) = O0(h

) = 0. If (4.18)
m+1)

R SV Y P

ISR ¥
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for small h, and hence the method is said to be of order m.

é‘ As (4.18) is generally implicit, it must be solved itera- K
tively. If we write

K L

1 2 .
= h ]z. ijk_j,

ajwk_j

ol 2t Vo

(4.19) g(wk) = Wy - hBOf(wk,tk) -

then (4.18) is the implicit equation g(wk) = 0. DGEAR provides
a variety of methods which the user may choose to solve
g(w) = 0.

First a predicted value of wﬁo) is obtained by an expli-
cit method. This is equivalent to (4.18) with 80 = 0, but DGEAR
uses the Nordsicck formulation (see [211). Then glwy) = 0 is . |

solved iteratively by one of a class of methods of the form f

@ D ) )

Note if P{1) = (38 iy = T - h8, (32) s{1)y» then (4.20)
is Newton's method. 1If P&i)

I, then (4.20) is functional
(fixed point) iteration.

Between these two extreme lie various approximations to
(%é)'(wﬁi)) which are more cheaply evaluated. One choice is
Pﬁi) = Pﬁo); i.e., do not re-evaluate the Jacobian at each itera- ‘
tion. The so-called chord method uses Pk = Pk, for some
k' < k, corresponding to the parameter MITER = 1 or MITER = 2.
A still less costly method, particularly where large systems are R
concerned, is one in which %% is approximated by a diagonal
matrix whose entries are forward difference approximations to the ‘

9f

diagonal of the Jacobian bred (MITER = 3). 1If %% is not avail- 2‘%

able analytically, it may be computed numerically (MITER = 2).

1
i

Qe - v ST
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For most of the examples considered here, the Adams methods
(METH = 1) with functional iteration (MITER = 0) were most effici-
ent. However, it should be noted that the PN&/PN methods can
lead to moderately stiff ODEs, as in the case where structural
damping was included, in which case the BDF methods (METH = 2)
and numerically computed Jacobian (MITER = 2) were used.

While the methods (4.18) are based upon constant stepsize h,
DGEAR does adjust the stepsize and order. Briefly, this is ac-
complished by interpolating the past data wk-j’wk-j (using the
Nordsieck array) to obtain the values of wk-j* required at
ty - jh* where h* is the new stepsize. Following a step of
size h at order m, DGEAR attempts to readjust the stepsize up-
ward every m+2 steps; this is done by estimating the local trun-
cation error at orders m-1, m, and m+l1 and choosing h* to be
the largest permitted by these three, and the order m is reset
accordingly. The estimated truncation error is effectively com-
pared to the requested local truncation error bound TOL which is
specified by the user.

One further parameter must be specified, namely an initial
stepsize HP. Since the method starts out with a first order ap-
proximation m = 1 (no previous history available), HfF must be
small. For the ID problems considered, TOL was usually taken to

be 1. x 10°°% and HP to be 1. x 10 ’.

g s = e e —

{
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Section 5. The Spline Package

The spline package contains the routines for evaluating
splines and their derivatives, for computing projections onto

spline subspaces, for computing inner products of the form

<DkB§ n,DkB? a0’ 0 < k < n, and for evaluating the '"spline

3 " v N
series z“iBi,n(x)'

a) Evaluation of Modified B-Splines and Their Derivatives

The evaluation of the B-spline basis functions is of course
fundamental to all the routines in the spline package. The B-
spline basis functions were introduced in Section 3 of Chapter 1.
Recall that there we defined all the B-splines in terms of a single
function. We defined

n .
(4.21) B (x) = én(x-y)f L3 (~1)J(r}>(x-j)t-l-
j=0 )
Then, the B-splines of odd degree (even order) were obtained by

taking n =2m (m = 2 for cubics, m = 3 for quintics) and a

partition aN = {xi}§:T:; with x; = i/N; we defined
h = Xje1 ~ %5
)’i = Xi - mh
N _
Bi,n-l(x) = Eﬁ((x'yi)/h)’ i=1-m,...,N+m-1.

Finally, the modified B-splines B? n~1(x) are computed by taking
H

the appropriate linear combinations of the ﬁ? n-1 2s in (1.15)-
N ?

(1.18) so that the Bi n-1 satisfy the given boundary conditions.
’

B£ is the fundamental spline of order n, with knots at
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0,1,...,n, and with support on [0,n]. The splines ﬁ? n have

’ ¥
knots AN, and the support of each ﬁ? 2 is [x .o ]

,2m-1 i-m*Xi+m
(0T [¥;»¥542p])- x

J
For the uniform partition Ah, two methods of evaluating the

A X
B? n_l(x) may be used. The first method uses the piecewise "4
? .
AN i
polynomial representation of B? n-1° For example, in the case f
H .

n = 4 (cubic splines), we obtain (see [35, pp. 89-90])

: ( 3.
(x-xi_z) , if x € [xi_z,xi_ll

, 3

2 2 3
h”+3h (x-xi_1)+3h(x-xi_1) -3(x-xi_ )T,

1
if x € [x; 5,x;], "
'X)S’

1,

P30 = g hesnti

2
1+1-x)+3h(xi+1-x) -3(x.

i+l

o

% lf x € [Xi,x

(x.

1+

i+l
l-x)3, if x € [xi+1,xi+2]

. 0, otherwise.

When each of the above expressions is evaluated using Horner's

sci.eme, this is a very efficient method, requiring only four |
multiplications. The derivatives of the B-splines may be repre-
sented similarly. However, a different representation for each
n and for each derivative is required.

The algorithm we have used for the computations in Chapters

vatives of any order. This algorithm is based upon the iterative

!
1
t
. 2 and 3 may be used for splines of arbitrary order and for deri- ‘
i
{
i

formulas satisfied by the fundamental B-spline (see [42, p. 136])

(4.22) B (x) = xB__;(x) + (n-x)B_;(x-1)

and
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(4.23) DBn(x) = (n-l)[Bn_l(x) - Bn_l(x-l)].
The iterative formula (4.22) can be used to evaluate Bn(x)
for any x. Since we evaluate splines only when the values of

all non-zero splines at x are required, as when computing the

N N for 0 < |i-j| < n,

; i <B. ) > '
matrix whose entries are Bl,n-l’BJ,n-l 0 i

j =0,...,N, the algorithm may be refined to efficiently produce

the values of all non-zero splines of order n at x.

. AN o= i -
First note that Bi+j,n-1(x) = B_((x yi+j)/h)

En((x-yi)/h-j). Given n, find i* such that n-1 < (x-y;4)/h<n,
and define ¢& = (x-yi*)/h. The values of the non-vanishing

. sN -1 .
B-splines {Bi*+j,n-1(x)}?=0 then correspond to the values of i
§n(§-j), j =0,...,n-1. To compute Fﬁ(g-j), we note that (4.22)

implies

(4.23) Ej(E-i) = (E-i)ﬁj_l(i-i) + (i+j-£)§j_1(€-1-i),
for j =2,...,n; 1 = n-j,...,n-1.

1, if j = n-1
0, if j < n-1°

(4.23) may be used to evaluate §h(€-j), j=20,...,n-1. Then,

oN T . .
Bj+i*,n-1(x) = Bn(E,.‘J), ] = 0,...,)’1'1.
If derivatives of the B\ n-1 @are required, as when the ma- .
L
2.N 2N
<D Bi,S’D Bj,5>0

may be used in conjunction with the above algorithm. We compute

Now, since §1(E-j) = { the iterative formula

trix with entries is to be computed, then (4.22)

Eﬁ-l(g-j)’ j =0,...,n-1, then compute Dﬁh(g-j) = (n-l)(ﬁh_l(g—j)

g e ¢ e = e

- ﬁh-l(g'j'l))‘ For second derivatives, Dzﬁn(g-j) =
(n-1)(n-2) (B ,(&-§) - 2B ,(g-j-1) + B _,{£-3-2)). Note that in

general to compute Dkﬁh(g-j) k < n-1, we need only evaluate
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En_k(i-j) and perform k differences on these values and mul-

. N k= .
tiply by (n-1)!/(n-k-1)!. Then, DkBj+i*,n-1(x) =D Bn(E-J).

. N
Finally, the Bj,n
appropriate. We note that each of these modification formulas

1 v 1 1
requires only that B%,B?,Bg_l,Bh be modified. Moreover, these

N
are changed only when x € [0,x2] or x € [XN-Z’XN]’ since the

are computed using (1.15)-(1.18) when

functions used to modify vanish outside these intervals. So we
first check if i = 0,1,N,N-1 and x 1lies in one of the two

intervals. If so, we compute

N _ aN _ ~N _ N s
Bi(x) = Bi(x) ci,lB-l(x) Ci,ZB-Z(X)’ i 0,1
or
N..yv - &N _ AN } aN — .
Bi(x) Bi(x) Ci,SBN+1(x) Ci,4BN+2(X)’ i N-1 or N,

where the cij are the coefficients appearing in (1.15)-(1.18).

Remark. The algorithm presented for computing the unmodified
B-splines presented above is essentially the one in [42, p. 205]
and is attributed to DeBoor.

The algorithm to compute the n non-vanishing B-splines at
X Trequires n2 + 2n-1 multiplications, as compared to nz-n
multiplications for the piecewise polynomial representation. How-
ever, the flexibility in computing derivatives and splines of all
order in one algorithm make the iterative algorithm attractive.
Furthermore, the spline computations occur primarily at level one,
and so the slight difference in efficiency has a negligible effect

on overall execution time.

This algorithm appears in the various packages as SPQV,

SPMVAL, or SPPVAL.
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b) Computation of Inner Products

The computation of the inner products is carried out via a
composite Gauss-Legendre two-point rule:
1

h
4.24 J f(x)dx =
( ) . x)dx = 5 N

17

E((v - 3 - /3/6)h) + £((v - 7 + Y3/6)h)

where h = 1/K, and K 1is chosen to be a fixed multiple of N

(usually K = 8N). The inner products <B§,B?>O are calculated
. 1
by computing X1y (v - 5 - Y3/2)h, Xy, = (v - % + v¥3/2)h, evalua-

ting all non-zero splines at X1y X9y forming the non-zero pro-
ducts B§(XIV)B§(XlV) and accumulating the products in a banded
matrix (storing only nonzero subdiagonals as columns). This
algorithm appears in the various packages as SETQ, SETMAT,
SETMBT.

We note that for large values of N, it may be worthwhile to
N LN N N

use the property that <Bi’Bj> = <Bi+1’Bj+1>’ where 1 = 2,...,N-2
for cubic splines and i = 3,...,N-3 for quintic splines.
c) Computation of Projections

The projections in the |'|m-norm onto the spline subspaces

7 4
are easily computed, once the inner products <B?,B?>m have been
computed and stored. Let PN be a typical projection operator
in the I-Im-norm, m= 0,1, or 2. Suppose we wish to compute the

projection of ¢ onto SE(AN) where n =3 (k = 0) or n

5

(k = 1,2, or 3). Then the projection PN is given by PN¢
N .

'20 a;B; where a = (aj,...,ay) is given by
1=

(4.25) a = (V) 1rNg




with

. 1 .
oN N m,N N
(R™¢), = <¢,B;> = <D"¢,D"B,>) = JO D¢ (x)D"B; (x)dx
and
. . 1 .
N _ N N - m,N MmN - m,N m,N
Q )ij = <Bi’Bj>m <D Bi’D Bj>0 JO D Bi(x)D Bj(x)dx.

The matrix Qk is computed once via the Gauss-Legendre rule and

stored; thus to compute the projections, we need only compute the

\
inner products <Dm¢,DmB2>O, i=20,...,N via the Gauss-legendre
rule (4.24).
We note that in the case where the |.] -norm is used, the

m,o

projections are still given by (4.25); i.e., the projections them-

selves do not depend on the weight a«. This is because with the

l-lm o Torm, a = (th)’laRh¢ = (Qh)'th¢, where Qh and RV are
as above. Finally, to compute the projections, we need a method
N .
for evaluating ¥ a.B%(x).
i=0 *?

d) Evaluation of the "Spline Series"

We also have two methods for evaluating

N

N
(4.25) s(x) = iZO ;Bi n-

1(x).

First observe that because of the local support of the B-splines,
that only n terms of (4.25) need be evaluated. Thus we can gen-
erate the values of the n non-vanishing B-splines at x using
the previously defined algorithm and perform the linear combina-
tion. A slightly more efficient method was pointed out in [42,

p. 193], We describe this method briefly here.




Again, first find i* such that n-1 < (x-yi*)/h < n, and

let & = (x-yi*)/h. Then,

~ N ,\N n’l —
s(x) = 20 c,BY (x) = .20 CiayiBpy(E-1).
= ’ i=

Define . c i=20,...,n. Using (4.22), it is easily

i i*+i?
shown that

n-1 n-1 1

T cJB (g-i) = LB (),

where ci = (&-i)cg + n—£+i-1)c9_1,

i
i= .,...,n-1
n-1,_ )
= '2—1 CiBn_z(g'l) s
1_5
2 .y 1 R |
where c; = (i-l)ci + (n-£+1-4)ci_1,
i=1,...,n-1
nil j=
= ciB_ . (&-3),
where
iz CiynJ-1 Craiiived-l
(4.26) ¢y (g 1)ci + (n-g+1 J)Ci_l.

For j = n-1, this becomes

{
(g)

El(g‘n+1)

Thus we generate the triangular array




n-1
n-1°

nz-n+2 operations. To get s(x), we need to write s(x) in

using (4.26) and take S(x) o This algorithm requires only

terms of the unmodified B-splines ﬁ§ n_l(x). We simply find
3

~ yN+m-1
{c;}{ ., such that
N+m-1 N
A AN _ N
(4.27) i=§_m Cim-18i,n-1(X) = iZO ¢iBY no1(x),
Ciem-1 = 3 for 2 < i < N-2. The others are found using (1.15)-
. N . AN
(1.18) to write Bi,n-l in terms of the Bi,n-l‘ The computa

A~

tion of the coefficients <, need only be performed when the cy

are changed. For example in the case of cubic splines modified as

in (1.15), we find the requirement that

N+1 o~ N
EiB§ = 2 c.BN
i=-1 toq=o 17
implies ¢, =c, for 2 <1i <N-2, and
= AN, 2 gN L s aN _ N N
CBq * COBO * ¢ By = cyBy * cqBy,
v AN ’s \ AN
(recall that Bg = BS - 4BI:I1 and B, = B? - Bg/4) which in turn
is equal to
- 4. 8N ) AN AN
4coB ) + (cp-cy/4)By + ¢ B,
Thus we find that &g = -4cy), EO = cy - /4, El = ¢y, and simi-
larly CN-1 % €10 Sy T Sy cN_1/4, CN+1 = -4cN.

[N S

e et

——

iy




115

For the quintic splines, we find that corresponding to the

modified B-splines in (1.16) for simple end conditions, we obtain

¢; = ¢ 012N

¢, = 1y - ¢
(4.28) €= -3¢y -

N+l T 736y T Onip

EN+2 = 12cN - Cno2

Corresponding the modified B-splines in (1.19) for fixed end con-

ditions, we obtain

c; = ¢4, 0<1iz<N

5_2 = 41.25c0 + 32.5C1 + 2.25C2
(4.29) E-l = -4.125c0 - 2.25c1 - .125c2

Cnel = -4.125¢cy - 2.25¢y 4 125¢y 5

Eyeg = 41.25c, + 32.5¢, 4 * 2.25¢,

Finally, for the modified B-splines corresponding to the canti-

lever beam in (1.18), we obtain (4.29) except that

N+l 1.5cN - .SCN_2

CN+2 3CN - 2¢

(4.30)

Section 6. Evaluation of the Right-Hand Side of the Approximating

sttem

Since the most frequently evaluated computations occur at
level 3 where we evaluate the right-hand side of the system (4.3)

it is worthwhile to organize these computations efficiently.
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We consider ways to evaluate the right-hand side of the ‘
system (4.3) »
Nty = @ M) + ’RNeeq, ) ).
1N N

Consider first the homogeneous part, (Qh)' K'w. Note that Q ij

will have a block diagonal structure ﬁ

To be concrete, let us restrict ourselves to the case s = 2,

which is the case of the Euler-Bernoulli formulation. In this

case,
r -\
N QT 0 N
Q = N | Qi is  (N+1) x (N+1)
0
| ) )
and ) ;
N 0 KT N
K = N N | K is (n+l1) x (N+1).
1 |
K. K :
\ 2 3 ) |

Each of the submatrices Q?

and K? has a banded structure; each
will be 7-banded when cubic splines are used and 11-banded when
quintic splines are used. Moreover, since each is a symmetric ma-
trix, these can be stored efficiently by storing the subdiagonals
and the diagonal as columns of a matrix which is (N+1) x 4 (or

(N+1) x 6 for quintic splines).
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Two ways can be used to evaluate a general term (Q?)-IK?V,

where v = (v;,...,Vy,;). One way is to compute A = (Qi)-lK?
at level one and save the matrix A. Then when evaluating the
right-hand side at level 3, we need only do a matrix multipli-
cation Av. However, A will in general be a full matrix (no
banded or sparse structure), and so this multiplication requires
(N+1)2 operations.

Another way to do this, which preserves the banded structure,
is to factor Q? = LLT where L 1is lower triangular, at level 1
by the Cholesky algorithm, and store the factor L as a banded

matrix (requiring (N+1) x 4 or (N+1) x 6 1locations). Then

at level 3, we compute

ii) L

iii) L'x = .
Step (i) requires 7N-5 operations (11N-9 for quintics), steps (ii)
and (iii) each require 4N-1 (6N-20 for quintics) to backsolve a
banded triangular system of algebraic equations. When done in this
manner, the computation of (Q?)-IK?V requires 15N-7 opera-
tions, N > 4, when cubic splines are used, and 23N-49 operations,
N > 6, when quintic splines are used. Thus for large values of
N (N > 16), there is a clear advantage to the second approach.

The Cholesky decomposition of the matrix Q? into LLT

was carried out by IMSL routine LUDAPB, and the backsolution (ii)
and (iii) by IMSL routine LUELPB.

We can now compare the computational efficiency of the two

approximations discussed for the Euler-Bernoulli beam. In order to

s




make a comparison, consider the case when y = 0

damping) .

For the quintic spline formulation, we had

N Q 0
- 1
<= N
Q2
( N
N _ 0 I\1
N (R T
L akz ks
with QT = K?. So (QN)-IKN had the structure
0 I
-1,N -1,N
aQZ hz GQZ K3
So with u = (ul,...,uN+1), v = (Vl,...,VN+1), we compute
v
Ny-1,N
@) 7k (3) T a1, N N
Q2 (aKzu + 5K3V)
requiring about 34N operations to evaluate when & > 0

about 29N operations when 6§ = 0.

For the cubic spline formulation, we obtained

0 I 0
@ N = | o 0 a(aly AN |,
N, -1,N
0 (al) 1Al 0 0

u
when Y,8 are both zero. The evaluation of (QN)'IKN(V)

W

about 30N operations. In addition, an extra set of N+l

(no viscous

and

requires

equa-
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tions has been used, compared to the quintic spline formulation.
Therefore, based upon this and our computational experience
there seems to be no advantage in going to the cubic spline for-
mulation.
N, -1,N _

To evaluate the non-homogeneous term, note (Q') "R F(q,t) =
PNF(q,t). The projections may be computed as in Section 5. 1If
the load f(t,x;q) can be written as g(x)h(t;q), then F(q,t)

has the form (O,g)T-h(t;q) and the projections PN(O,g)T may

be computed at level 1 (once for any given N) and stored.

poun__ oo




CHAPTER 5.

CONCLUSIONS

We have presented numerical methods for parameter identifica-
tion of several constant parameters appearing in the Euler-
Bernoulli and Timoshenko equations for transverse vibrations of
a beam. The practical utility of our approach is supported by our
computational experience on a large number of examples, a sample

of which has been included here. In most cases of interest we have

given a complete treatment of our methods including numerical
algorithms, convergence proofs, and numerical results.

The fundamental ideas upon which our convergence results are
based, involving the use of a semigroup theoretic approach for the
approximation of identification problems governed by partial dif-
ferential equations f{distributed parameter systems), first ap-

peared in [11]. These methods essentially involve writing the

initial-boundary value problem as an abstract equation
(5.1) 2(t) =o/(q)z(t) + F(q,t)

in a Hilbert space Z, where gof(q) 1is the generator of a C0
semigroup in Z, and approximating the generator /(q) by the
operator g/N(q) = PNLV(q)PN, with pN the projeétion onto a
finite dimensional subspace ZN spanned by splines. The result-

ing system of ordinary differential equations

(5.2) Nty = NN + BN,

is used to approximate solutions of (5.1).
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Instead of seeking a q which minimizes a cost functional @
J(q,z(+,9)) over mild solutions of (5.1), we obtain estimated G
values for q by seeking a EN which minimizes the cost func-
tional J(q;zN(-;q)) over solutions zN(-;q) to (5.2). N

The idea of estimating solutions to the identification prob-
lem is not new. The notion of approximating solutions of the
partial differential equation and performing the optimization en j
the approximate solutions to obtain parameter estimates has been
used extensively. We refer the reader to the survey articles
F {21, [26), [32], and [36) to see the variety of approaches which ;
have been used. We only discuss some of the relevant material
here.

We note that many investigators have used finite-difference
methods, modal approximations, and the methods of lines to approxi-
mate solutions of the partial differential equation (see Table 1
in [26]) in the context of parameter identification. Galerkin }
methods, to which our methods are closely related, have also been
used. In (33], Galerkin methods are used for the heat equation
employing a basis of polynomials which satisfy the boundary condi-
tions and which are orthogonalized via Gram-Schmidt.

While most of the work in the surveys deals with the estima-
tion problem for the heat equation, several authors have proposed
numerical methods for estimating a single parameter in the beam

equation

(5.3) = -qy

ytt XxXxx"

In [19] an example is given where this is done using finite
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differences to approximate solutions to (5.3). We have found no
results in the literature for estimating structural or viscous
damping coefficients or the parameters in the Timoshenko equation.

Cubic splines have also been used in the context of estima-

; tion of parameters (see surveys above). In [43] they are used
for the one-dimensional heat equation to obtain a "lumped system"
of ordinary differential equations which approximate the partial
differential equation, by collocating with cubic splines in the
spatial variable. We believe our approximations using PNj/(q)PN
with cubic and quintic splines are new.
Little work has been done in proving convergence of parameter
estimation schemes, and we have found no such theoretical work in
| the literature for methods comparable to ours. The literature on
.
% parameter estimation consists mainly of proposed numerical
! methods with test results for a simple example estimating a single
identification of many parameters and have provided proofs of
convergence for our methods.
While some authors have investigated the identification of

coefficients which are a function of the spatial variable (see

Table 1 in [26]), we have restricted our attention here to the
case of constant parameters. Our methods do carry over to the i

case of spatially varying coefficients, and this has been done

for a special case of the convection-diffusion equation (see

[S, p. 22] for a discussion). We have not treated the questions

of observability on identificability, but have chosen to empha-
size the convergence of the parameter estimates to the solution

of the identification problem.
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In the case of deterministic data (noise free), most authors

have used a steepest descent method to perform the optimization

(see Table 1 in [26] and other surveys). It is well-known that

steepest descent can exhibit oscillatory behavior and perform

badly in practice [17, p. 18]. For this reason, we have chosen

the more robust Levenberg-Marquardt method. .;
We have used a discrete least-squares fit-to-data criterion

(cost functional). Many other type of cost functionals have been

used also. In particular, cost functionals of the form

L T 2
(5.4)  J@yCasa) = 1| Iyexg) - ongefar
i=1 /0

(continuous measurements in time from a finite number of sensors)
have been considered. The methods we have proposed extend di-
rectly to such functionals. In fact, ours may be considered a
digitized version of (5.4), where only a finite number of time
samples are recorded.

We have only used state observations corresponding to dis-
placements y(ti,xj) to simplify the discussion. It should be
clear that we could also have used data of the form yt(ti’xj) 1
(velocity measurements) or data of the form yx(ti,xj) (from
strain gauges) as well, with only slight modifications in the
arguments and in the computer codes. |

The theory that we have developed (following [11]) is the

semidiscrete approximations (5.2) (i.e., continuous in time).
This serves to decouple the analysis for the spatial approxima-
tion from the time discretization that is employed in practice.

This is somewhat necessary because we have used variable-step/
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variable order methods (Gear's package) to integrate the approxi-
mating system of ordinary differential equations to a specified
local error tolerance. While a full analysis of such a fully
discretized method would be difficult, fully discrete methods
based on Padé approximations to expCQ(N(q)t) have been analyzed
for functional differential equations [39] and this analysis is
being carried over to our methods for partial differential equa-
tions (for fixed step length At).

The semigroup theoretic approach (and in particular the
Trotter-Kato theorem) provides a simple approach to obtaining
convergence results. Other methods have been used and may be more
powerful in obtaining results in a broader class of equations.
For example, [ 8] have used a weak formulation and Gronwall-type
estimates to obtain convergence results for estimation problems
involving a class of non-autonomous equations.

We also note that in [16], methods to approximate solutions
to an elliptic equation are proposed, and an a priori estimate of

the error |g~

- q| is derived. The Trotter-Kato approach does
not appear to yield such estimatgs in any easy fashion.

In short, we have presented a unified treatment of a class
of parameter estimation problems involving certain beam equations.
Our treatment includes new methods of approximation (based on the

classical approximations PNJqu)PN), proofs of convergence of the

approximate identification problem, and numerical results.

T
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